Spaces:
Sleeping
Sleeping
# app.py | |
import streamlit as st | |
from utils import ( | |
generate_script, | |
generate_audio_mp3, # Updated import | |
truncate_text, | |
extract_text_from_url, | |
transcribe_youtube_video, | |
research_topic | |
) | |
from prompts import SYSTEM_PROMPT # Ensure this module exists | |
import pypdf | |
from pydub import AudioSegment | |
import tempfile | |
import os | |
def generate_podcast(file, url, video_url, research_topic_input, tone, length): | |
print("[LOG] generate_podcast called") | |
# Check that only one input source is used | |
sources = [bool(file), bool(url), bool(video_url), bool(research_topic_input)] | |
if sum(sources) > 1: | |
print("[ERROR] Multiple input sources provided.") | |
return None, "Please provide either a PDF file, a URL, a YouTube link, or a Research topic - not multiple." | |
if not any(sources): | |
print("[ERROR] No input source provided.") | |
return None, "Please provide at least one source." | |
text = "" | |
if file: | |
try: | |
print("[LOG] Reading PDF file:", file.name) | |
if not file.name.lower().endswith('.pdf'): | |
print("[ERROR] Uploaded file is not a PDF.") | |
return None, "Please upload a PDF file." | |
reader = pypdf.PdfReader(file.name) | |
text = " ".join(page.extract_text() for page in reader.pages if page.extract_text()) | |
print("[LOG] PDF text extraction successful.") | |
except Exception as e: | |
print("[ERROR] Error reading PDF file:", e) | |
return None, f"Error reading PDF file: {str(e)}" | |
elif url: | |
try: | |
print("[LOG] Using URL input") | |
text = extract_text_from_url(url) | |
if not text: | |
print("[ERROR] Failed to extract text from URL.") | |
return None, "Failed to extract text from the provided URL." | |
except Exception as e: | |
print("[ERROR] Error extracting text from URL:", e) | |
return None, f"Error extracting text from URL: {str(e)}" | |
elif video_url: | |
try: | |
print("[LOG] Using YouTube video input") | |
text = transcribe_youtube_video(video_url) | |
if not text: | |
print("[ERROR] Failed to transcribe YouTube video.") | |
return None, "Failed to transcribe the provided YouTube video." | |
except Exception as e: | |
print("[ERROR] Error transcribing YouTube video:", e) | |
return None, f"Error transcribing YouTube video: {str(e)}" | |
elif research_topic_input: | |
try: | |
print("[LOG] Researching topic:", research_topic_input) | |
text = research_topic(research_topic_input) | |
if not text: | |
print("[ERROR] No information found for the topic.") | |
return None, f"Sorry, I couldn't find recent information on '{research_topic_input}'." | |
except Exception as e: | |
print("[ERROR] Error researching topic:", e) | |
return None, f"Error researching topic: {str(e)}" | |
else: | |
print("[ERROR] No valid input source detected.") | |
return None, "Please provide a PDF file, URL, YouTube link, or Research topic." | |
try: | |
text = truncate_text(text) | |
script = generate_script(SYSTEM_PROMPT, text, tone, length) | |
except Exception as e: | |
print("[ERROR] Error generating script:", e) | |
return None, f"Error generating script: {str(e)}" | |
audio_segments = [] | |
transcript = "" | |
try: | |
print("[LOG] Generating audio segments...") | |
# Define crossfade duration in milliseconds | |
crossfade_duration = 50 # 50ms crossfade for smooth transitions | |
for i, item in enumerate(script.dialogue): | |
try: | |
audio_file = generate_audio_mp3(item.text, item.speaker) # Updated function call | |
line_audio = AudioSegment.from_file(audio_file, format="mp3") # Changed format to mp3 | |
audio_segments.append(line_audio) | |
transcript += f"**{item.speaker}**: {item.text}\n\n" | |
os.remove(audio_file) | |
except Exception as e: | |
print(f"[ERROR] Error generating audio for dialogue item {i+1}: {e}") | |
continue | |
if not audio_segments: | |
print("[ERROR] No audio segments were generated.") | |
return None, "No audio segments were generated." | |
print("[LOG] Combining audio segments with crossfades...") | |
# Initialize combined audio with the first segment | |
combined = audio_segments[0] | |
# Append remaining segments with crossfade | |
for seg in audio_segments[1:]: | |
combined = combined.append(seg, crossfade=crossfade_duration) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio: # Changed suffix to mp3 | |
combined.export(temp_audio.name, format="mp3") # Changed format to mp3 | |
print("[LOG] Podcast generated:", temp_audio.name) | |
return temp_audio.name, transcript | |
except Exception as e: | |
print("[ERROR] Error generating audio:", e) | |
return None, f"Error generating audio: {str(e)}" | |
def main(): | |
# Set Streamlit page config | |
st.set_page_config( | |
page_title="MyPod - AI based Podcast Generator", | |
layout="centered" | |
) | |
st.title("๐ MyPod - AI-based Podcast Generator") | |
st.markdown( | |
""" | |
<style> | |
.main { | |
background-color: #f9f9f9; | |
} | |
.block-container { | |
padding: 2rem; | |
border-radius: 10px; | |
background-color: #ffffff; | |
box-shadow: 0 0 10px rgba(0,0,0,0.1); | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.markdown( | |
"Welcome to **MyPod**, your go-to AI-powered podcast generator! ๐\n\n" | |
"MyPod transforms your documents, webpages, YouTube videos, or research topics into a more human-sounding, conversational podcast.\n" | |
"Select a tone and a duration range. The script will be on-topic, concise, and respect your chosen length.\n\n" | |
"### How to use:\n" | |
"1. **Provide one source:** PDF, URL, YouTube link (Requires User Auth - Work in Progress), or a Topic to Research.\n" | |
"2. **Choose the tone and the target duration.**\n" | |
"3. **Click 'Generate Podcast'** to produce your podcast.\n\n" | |
"**Research a Topic:** Please be as detailed as possible in your topic statement. If it's too niche or specific, " | |
"you might not get the desired outcome. We'll fetch information from Wikipedia and RSS feeds (BBC, CNN, Associated Press, " | |
"NDTV, Times of India, The Hindu, Economic Times, Google News) or the LLM knowledge base to get recent info about the topic.\n\n" | |
"**Token Limit:** Up to ~2,048 tokens are supported. Long inputs may be truncated.\n" | |
"**Note:** YouTube transcription uses Whisper on CPU and may take longer for very long videos.\n\n" | |
"โณ**Please be patient while your podcast is being generated.** This process involves content analysis, script creation, " | |
"and high-quality audio synthesis, which may take a few minutes.\n\n" | |
"๐ฅ **Ready to create your personalized podcast?** Give it a try now and let the magic happen! ๐ฅ" | |
) | |
st.write("---") | |
# Create 2 columns for inputs | |
col1, col2 = st.columns(2) | |
with col1: | |
file = st.file_uploader("Upload PDF (Only .pdf)", type=["pdf"]) | |
url = st.text_input("Or Enter URL") | |
video_url = st.text_input("Or Enter YouTube Link (Requires User Auth - Work in Progress)") | |
with col2: | |
research_topic_input = st.text_input("Or Research a Topic") | |
tone = st.radio( | |
"Tone", | |
["Humorous", "Formal", "Casual", "Youthful"], | |
index=2 | |
) | |
length = st.radio( | |
"Length", | |
["1-3 Mins", "3-5 Mins", "5-10 Mins", "10-20 Mins"], | |
index=0 | |
) | |
st.write("") | |
generate_button = st.button("Generate Podcast") | |
if generate_button: | |
# Run the generate_podcast function | |
with st.spinner("Generating your podcast, please wait..."): | |
podcast_file, transcript = generate_podcast( | |
file, url, video_url, research_topic_input, tone, length | |
) | |
if podcast_file is None: | |
st.error(transcript) | |
else: | |
st.success("Podcast generated successfully!") | |
audio_file = open(podcast_file, 'rb') | |
audio_bytes = audio_file.read() | |
audio_file.close() | |
st.audio(audio_bytes, format='audio/mp3') | |
st.markdown(transcript) | |
# Clean up the temp file | |
os.remove(podcast_file) | |
if __name__ == "__main__": | |
main() | |