SearchPod1.0 / app.py
siddhartharyaai's picture
Create app.py
aa1b4ab verified
raw
history blame
8.8 kB
# app.py
import streamlit as st
from utils import (
generate_script,
generate_audio_mp3, # Updated import
truncate_text,
extract_text_from_url,
transcribe_youtube_video,
research_topic
)
from prompts import SYSTEM_PROMPT # Ensure this module exists
import pypdf
from pydub import AudioSegment
import tempfile
import os
def generate_podcast(file, url, video_url, research_topic_input, tone, length):
print("[LOG] generate_podcast called")
# Check that only one input source is used
sources = [bool(file), bool(url), bool(video_url), bool(research_topic_input)]
if sum(sources) > 1:
print("[ERROR] Multiple input sources provided.")
return None, "Please provide either a PDF file, a URL, a YouTube link, or a Research topic - not multiple."
if not any(sources):
print("[ERROR] No input source provided.")
return None, "Please provide at least one source."
text = ""
if file:
try:
print("[LOG] Reading PDF file:", file.name)
if not file.name.lower().endswith('.pdf'):
print("[ERROR] Uploaded file is not a PDF.")
return None, "Please upload a PDF file."
reader = pypdf.PdfReader(file.name)
text = " ".join(page.extract_text() for page in reader.pages if page.extract_text())
print("[LOG] PDF text extraction successful.")
except Exception as e:
print("[ERROR] Error reading PDF file:", e)
return None, f"Error reading PDF file: {str(e)}"
elif url:
try:
print("[LOG] Using URL input")
text = extract_text_from_url(url)
if not text:
print("[ERROR] Failed to extract text from URL.")
return None, "Failed to extract text from the provided URL."
except Exception as e:
print("[ERROR] Error extracting text from URL:", e)
return None, f"Error extracting text from URL: {str(e)}"
elif video_url:
try:
print("[LOG] Using YouTube video input")
text = transcribe_youtube_video(video_url)
if not text:
print("[ERROR] Failed to transcribe YouTube video.")
return None, "Failed to transcribe the provided YouTube video."
except Exception as e:
print("[ERROR] Error transcribing YouTube video:", e)
return None, f"Error transcribing YouTube video: {str(e)}"
elif research_topic_input:
try:
print("[LOG] Researching topic:", research_topic_input)
text = research_topic(research_topic_input)
if not text:
print("[ERROR] No information found for the topic.")
return None, f"Sorry, I couldn't find recent information on '{research_topic_input}'."
except Exception as e:
print("[ERROR] Error researching topic:", e)
return None, f"Error researching topic: {str(e)}"
else:
print("[ERROR] No valid input source detected.")
return None, "Please provide a PDF file, URL, YouTube link, or Research topic."
try:
text = truncate_text(text)
script = generate_script(SYSTEM_PROMPT, text, tone, length)
except Exception as e:
print("[ERROR] Error generating script:", e)
return None, f"Error generating script: {str(e)}"
audio_segments = []
transcript = ""
try:
print("[LOG] Generating audio segments...")
# Define crossfade duration in milliseconds
crossfade_duration = 50 # 50ms crossfade for smooth transitions
for i, item in enumerate(script.dialogue):
try:
audio_file = generate_audio_mp3(item.text, item.speaker) # Updated function call
line_audio = AudioSegment.from_file(audio_file, format="mp3") # Changed format to mp3
audio_segments.append(line_audio)
transcript += f"**{item.speaker}**: {item.text}\n\n"
os.remove(audio_file)
except Exception as e:
print(f"[ERROR] Error generating audio for dialogue item {i+1}: {e}")
continue
if not audio_segments:
print("[ERROR] No audio segments were generated.")
return None, "No audio segments were generated."
print("[LOG] Combining audio segments with crossfades...")
# Initialize combined audio with the first segment
combined = audio_segments[0]
# Append remaining segments with crossfade
for seg in audio_segments[1:]:
combined = combined.append(seg, crossfade=crossfade_duration)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio: # Changed suffix to mp3
combined.export(temp_audio.name, format="mp3") # Changed format to mp3
print("[LOG] Podcast generated:", temp_audio.name)
return temp_audio.name, transcript
except Exception as e:
print("[ERROR] Error generating audio:", e)
return None, f"Error generating audio: {str(e)}"
def main():
# Set Streamlit page config
st.set_page_config(
page_title="MyPod - AI based Podcast Generator",
layout="centered"
)
st.title("๐ŸŽ™ MyPod - AI-based Podcast Generator")
st.markdown(
"""
<style>
.main {
background-color: #f9f9f9;
}
.block-container {
padding: 2rem;
border-radius: 10px;
background-color: #ffffff;
box-shadow: 0 0 10px rgba(0,0,0,0.1);
}
</style>
""",
unsafe_allow_html=True
)
st.markdown(
"Welcome to **MyPod**, your go-to AI-powered podcast generator! ๐ŸŽ‰\n\n"
"MyPod transforms your documents, webpages, YouTube videos, or research topics into a more human-sounding, conversational podcast.\n"
"Select a tone and a duration range. The script will be on-topic, concise, and respect your chosen length.\n\n"
"### How to use:\n"
"1. **Provide one source:** PDF, URL, YouTube link (Requires User Auth - Work in Progress), or a Topic to Research.\n"
"2. **Choose the tone and the target duration.**\n"
"3. **Click 'Generate Podcast'** to produce your podcast.\n\n"
"**Research a Topic:** Please be as detailed as possible in your topic statement. If it's too niche or specific, "
"you might not get the desired outcome. We'll fetch information from Wikipedia and RSS feeds (BBC, CNN, Associated Press, "
"NDTV, Times of India, The Hindu, Economic Times, Google News) or the LLM knowledge base to get recent info about the topic.\n\n"
"**Token Limit:** Up to ~2,048 tokens are supported. Long inputs may be truncated.\n"
"**Note:** YouTube transcription uses Whisper on CPU and may take longer for very long videos.\n\n"
"โณ**Please be patient while your podcast is being generated.** This process involves content analysis, script creation, "
"and high-quality audio synthesis, which may take a few minutes.\n\n"
"๐Ÿ”ฅ **Ready to create your personalized podcast?** Give it a try now and let the magic happen! ๐Ÿ”ฅ"
)
st.write("---")
# Create 2 columns for inputs
col1, col2 = st.columns(2)
with col1:
file = st.file_uploader("Upload PDF (Only .pdf)", type=["pdf"])
url = st.text_input("Or Enter URL")
video_url = st.text_input("Or Enter YouTube Link (Requires User Auth - Work in Progress)")
with col2:
research_topic_input = st.text_input("Or Research a Topic")
tone = st.radio(
"Tone",
["Humorous", "Formal", "Casual", "Youthful"],
index=2
)
length = st.radio(
"Length",
["1-3 Mins", "3-5 Mins", "5-10 Mins", "10-20 Mins"],
index=0
)
st.write("")
generate_button = st.button("Generate Podcast")
if generate_button:
# Run the generate_podcast function
with st.spinner("Generating your podcast, please wait..."):
podcast_file, transcript = generate_podcast(
file, url, video_url, research_topic_input, tone, length
)
if podcast_file is None:
st.error(transcript)
else:
st.success("Podcast generated successfully!")
audio_file = open(podcast_file, 'rb')
audio_bytes = audio_file.read()
audio_file.close()
st.audio(audio_bytes, format='audio/mp3')
st.markdown(transcript)
# Clean up the temp file
os.remove(podcast_file)
if __name__ == "__main__":
main()