File size: 8,803 Bytes
aa1b4ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# app.py

import streamlit as st
from utils import (
    generate_script, 
    generate_audio_mp3,  # Updated import
    truncate_text, 
    extract_text_from_url, 
    transcribe_youtube_video, 
    research_topic
)
from prompts import SYSTEM_PROMPT  # Ensure this module exists
import pypdf
from pydub import AudioSegment
import tempfile
import os

def generate_podcast(file, url, video_url, research_topic_input, tone, length):
    print("[LOG] generate_podcast called")
    
    # Check that only one input source is used
    sources = [bool(file), bool(url), bool(video_url), bool(research_topic_input)]
    if sum(sources) > 1:
        print("[ERROR] Multiple input sources provided.")
        return None, "Please provide either a PDF file, a URL, a YouTube link, or a Research topic - not multiple."
    if not any(sources):
        print("[ERROR] No input source provided.")
        return None, "Please provide at least one source."

    text = ""
    if file:
        try:
            print("[LOG] Reading PDF file:", file.name)
            if not file.name.lower().endswith('.pdf'):
                print("[ERROR] Uploaded file is not a PDF.")
                return None, "Please upload a PDF file."
            reader = pypdf.PdfReader(file.name)
            text = " ".join(page.extract_text() for page in reader.pages if page.extract_text())
            print("[LOG] PDF text extraction successful.")
        except Exception as e:
            print("[ERROR] Error reading PDF file:", e)
            return None, f"Error reading PDF file: {str(e)}"
    elif url:
        try:
            print("[LOG] Using URL input")
            text = extract_text_from_url(url)
            if not text:
                print("[ERROR] Failed to extract text from URL.")
                return None, "Failed to extract text from the provided URL."
        except Exception as e:
            print("[ERROR] Error extracting text from URL:", e)
            return None, f"Error extracting text from URL: {str(e)}"
    elif video_url:
        try:
            print("[LOG] Using YouTube video input")
            text = transcribe_youtube_video(video_url)
            if not text:
                print("[ERROR] Failed to transcribe YouTube video.")
                return None, "Failed to transcribe the provided YouTube video."
        except Exception as e:
            print("[ERROR] Error transcribing YouTube video:", e)
            return None, f"Error transcribing YouTube video: {str(e)}"
    elif research_topic_input:
        try:
            print("[LOG] Researching topic:", research_topic_input)
            text = research_topic(research_topic_input)
            if not text:
                print("[ERROR] No information found for the topic.")
                return None, f"Sorry, I couldn't find recent information on '{research_topic_input}'."
        except Exception as e:
            print("[ERROR] Error researching topic:", e)
            return None, f"Error researching topic: {str(e)}"
    else:
        print("[ERROR] No valid input source detected.")
        return None, "Please provide a PDF file, URL, YouTube link, or Research topic."

    try:
        text = truncate_text(text)
        script = generate_script(SYSTEM_PROMPT, text, tone, length)
    except Exception as e:
        print("[ERROR] Error generating script:", e)
        return None, f"Error generating script: {str(e)}"

    audio_segments = []
    transcript = ""

    try:
        print("[LOG] Generating audio segments...")
        # Define crossfade duration in milliseconds
        crossfade_duration = 50  # 50ms crossfade for smooth transitions

        for i, item in enumerate(script.dialogue):
            try:
                audio_file = generate_audio_mp3(item.text, item.speaker)  # Updated function call
                line_audio = AudioSegment.from_file(audio_file, format="mp3")  # Changed format to mp3
                audio_segments.append(line_audio)
                transcript += f"**{item.speaker}**: {item.text}\n\n"
                os.remove(audio_file)
            except Exception as e:
                print(f"[ERROR] Error generating audio for dialogue item {i+1}: {e}")
                continue

        if not audio_segments:
            print("[ERROR] No audio segments were generated.")
            return None, "No audio segments were generated."

        print("[LOG] Combining audio segments with crossfades...")
        # Initialize combined audio with the first segment
        combined = audio_segments[0]

        # Append remaining segments with crossfade
        for seg in audio_segments[1:]:
            combined = combined.append(seg, crossfade=crossfade_duration)

        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:  # Changed suffix to mp3
            combined.export(temp_audio.name, format="mp3")  # Changed format to mp3
            print("[LOG] Podcast generated:", temp_audio.name)
            return temp_audio.name, transcript

    except Exception as e:
        print("[ERROR] Error generating audio:", e)
        return None, f"Error generating audio: {str(e)}"

def main():
    # Set Streamlit page config
    st.set_page_config(
        page_title="MyPod - AI based Podcast Generator",
        layout="centered"
    )

    st.title("๐ŸŽ™ MyPod - AI-based Podcast Generator")
    st.markdown(
        """
        <style>
        .main {
            background-color: #f9f9f9;
        }
        .block-container {
            padding: 2rem;
            border-radius: 10px;
            background-color: #ffffff;
            box-shadow: 0 0 10px rgba(0,0,0,0.1);
        }
        </style>
        """,
        unsafe_allow_html=True
    )

    st.markdown(
        "Welcome to **MyPod**, your go-to AI-powered podcast generator! ๐ŸŽ‰\n\n"
        "MyPod transforms your documents, webpages, YouTube videos, or research topics into a more human-sounding, conversational podcast.\n"
        "Select a tone and a duration range. The script will be on-topic, concise, and respect your chosen length.\n\n"
        "### How to use:\n"
        "1. **Provide one source:** PDF, URL, YouTube link (Requires User Auth - Work in Progress), or a Topic to Research.\n"
        "2. **Choose the tone and the target duration.**\n"
        "3. **Click 'Generate Podcast'** to produce your podcast.\n\n"
        "**Research a Topic:** Please be as detailed as possible in your topic statement. If it's too niche or specific, "
        "you might not get the desired outcome. We'll fetch information from Wikipedia and RSS feeds (BBC, CNN, Associated Press, "
        "NDTV, Times of India, The Hindu, Economic Times, Google News) or the LLM knowledge base to get recent info about the topic.\n\n"
        "**Token Limit:** Up to ~2,048 tokens are supported. Long inputs may be truncated.\n"
        "**Note:** YouTube transcription uses Whisper on CPU and may take longer for very long videos.\n\n"
        "โณ**Please be patient while your podcast is being generated.** This process involves content analysis, script creation, "
        "and high-quality audio synthesis, which may take a few minutes.\n\n"
        "๐Ÿ”ฅ **Ready to create your personalized podcast?** Give it a try now and let the magic happen! ๐Ÿ”ฅ"
    )

    st.write("---")

    # Create 2 columns for inputs
    col1, col2 = st.columns(2)

    with col1:
        file = st.file_uploader("Upload PDF (Only .pdf)", type=["pdf"])
        url = st.text_input("Or Enter URL")
        video_url = st.text_input("Or Enter YouTube Link (Requires User Auth - Work in Progress)")

    with col2:
        research_topic_input = st.text_input("Or Research a Topic")
        tone = st.radio(
            "Tone",
            ["Humorous", "Formal", "Casual", "Youthful"],
            index=2
        )
        length = st.radio(
            "Length",
            ["1-3 Mins", "3-5 Mins", "5-10 Mins", "10-20 Mins"],
            index=0
        )

    st.write("")
    generate_button = st.button("Generate Podcast")

    if generate_button:
        # Run the generate_podcast function
        with st.spinner("Generating your podcast, please wait..."):
            podcast_file, transcript = generate_podcast(
                file, url, video_url, research_topic_input, tone, length
            )
        
        if podcast_file is None:
            st.error(transcript)
        else:
            st.success("Podcast generated successfully!")
            audio_file = open(podcast_file, 'rb')
            audio_bytes = audio_file.read()
            audio_file.close()

            st.audio(audio_bytes, format='audio/mp3')
            st.markdown(transcript)

            # Clean up the temp file
            os.remove(podcast_file)

if __name__ == "__main__":
    main()