Spaces:
Running
Running
File size: 22,323 Bytes
e19a7d9 66b4c56 26794f8 e19a7d9 66b4c56 de89d5c 26794f8 e19a7d9 cb1debc e19a7d9 cb1debc de89d5c cb1debc de89d5c efe25f9 cb1debc 22de709 e19a7d9 36b966f e19a7d9 8139f36 12811af 8139f36 cb1debc de89d5c 2ae64da 8139f36 cb1debc 8139f36 a91583a 8139f36 401e4f3 8139f36 b187370 8139f36 5857c7b 8139f36 b187370 8139f36 6ff5ac5 8139f36 67c5a3a 8139f36 de89d5c 8139f36 26794f8 8139f36 5d6a0d4 5857c7b 8f14416 5857c7b 8482488 5857c7b 8482488 5857c7b 8482488 5857c7b 388741c 5857c7b 388741c 5857c7b 388741c 5857c7b 388741c 5857c7b 388741c 5857c7b 22de709 de89d5c cb1debc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import os
import re
import json
import requests
import tempfile
from bs4 import BeautifulSoup
from typing import List, Literal, Optional
from pydantic import BaseModel
from pydub import AudioSegment, effects
from transformers import pipeline
import tiktoken
from groq import Groq # Retained for LLM interaction
import numpy as np
import torch
import random
# --- CORRECT IMPORTS ---
# No more sys.path modification!
from report_structure import generate_report # For report structuring
from tavily import TavilyClient
class DialogueItem(BaseModel):
speaker: Literal["Jane", "John"]
display_speaker: str = "Jane"
text: str
class Dialogue(BaseModel):
dialogue: List[DialogueItem]
asr_pipeline = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny.en",
device=0 if torch.cuda.is_available() else -1
)
def truncate_text(text, max_tokens=2048):
print("[LOG] Truncating text if needed.")
tokenizer = tiktoken.get_encoding("cl100k_base")
tokens = tokenizer.encode(text)
if len(tokens) > max_tokens:
print("[LOG] Text too long, truncating.")
return tokenizer.decode(tokens[:max_tokens])
return text
def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
print(f"[LOG] Shifting pitch by {semitones} semitones.")
new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
return shifted_audio.set_frame_rate(audio.frame_rate)
# --- Functions no longer needed ---
# def is_sufficient(...)
# def query_llm_for_additional_info(...)
# def research_topic(...)
# def fetch_wikipedia_summary(...)
# def fetch_rss_feed(...)
# def find_relevant_article(...)
# def fetch_article_text(...)
def generate_script(
system_prompt: str,
input_text: str,
tone: str,
target_length: str,
host_name: str = "Jane",
guest_name: str = "John",
sponsor_style: str = "Separate Break",
sponsor_provided=None
):
print("[LOG] Generating script with tone:", tone, "and length:", target_length)
import streamlit as st # Import streamlit here, where it's used
if (host_name == "Jane" or not host_name) and st.session_state.get("language_selection") in ["English (Indian)", "Hinglish", "Hindi"]:
host_name = "Isha"
if (guest_name == "John" or not guest_name) and st.session_state.get("language_selection") in ["English (Indian)", "Hinglish", "Hindi"]:
guest_name = "Aarav"
words_per_minute = 150
numeric_minutes = 3
match = re.search(r"(\d+)", target_length)
if match:
numeric_minutes = int(match.group(1))
min_words = max(50, numeric_minutes * 100)
max_words = numeric_minutes * words_per_minute
tone_map = {
"Humorous": "funny and exciting, makes people chuckle",
"Formal": "business-like, well-structured, professional",
"Casual": "like a conversation between close friends, relaxed and informal",
"Youthful": "like how teenagers might chat, energetic and lively"
}
chosen_tone = tone_map.get(tone, "casual")
if sponsor_provided:
if sponsor_style == "Separate Break":
sponsor_instructions = (
"If sponsor content is provided, include it in a separate ad break (~30 seconds). "
"Use phrasing like 'Now a word from our sponsor...' and end with 'Back to the show' or similar."
)
else:
sponsor_instructions = (
"If sponsor content is provided, blend it naturally (~30 seconds) into the conversation. "
"Avoid abrupt transitions."
)
else:
sponsor_instructions = ""
prompt = (
f"{system_prompt}\n"
f"TONE: {chosen_tone}\n"
f"TARGET LENGTH: {target_length} (~{min_words}-{max_words} words)\n"
f"INPUT TEXT: {input_text}\n\n"
f"# Sponsor Style Instruction:\n{sponsor_instructions}\n\n"
"Please provide the output in the following JSON format without any additional text:\n\n"
"{\n"
' "dialogue": [\n'
' {\n'
' "speaker": "Jane",\n'
' "text": "..." \n'
' },\n'
' {\n'
' "speaker": "John",\n'
' "text": "..." \n'
' }\n'
" ]\n"
"}"
)
print("[LOG] Sending prompt to Deepseek R1 via OpenRouter:")
print(prompt)
# Add language-specific instructions
if st.session_state.get("language_selection") == "Hinglish":
prompt += "\n\nPlease generate the script in Romanized Hindi.\n"
elif st.session_state.get("language_selection") == "Hindi":
prompt += "\n\nPlease generate the script exclusively in Hindi, using only Hindi vocabulary and grammar without any English words or phrases.\n"
try:
headers = {
"Authorization": f"Bearer {os.environ.get('DEEPSEEK_API_KEY')}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek/deepseek-r1",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 2048,
"temperature": 0.7
}
response = requests.post("https://openrouter.ai/api/v1/chat/completions",
headers=headers, data=json.dumps(data))
response.raise_for_status()
raw_content = response.json()["choices"][0]["message"]["content"].strip()
except Exception as e:
print("[ERROR] Deepseek API error:", e)
raise ValueError(f"Error communicating with Deepseek API: {str(e)}")
start_index = raw_content.find('{')
end_index = raw_content.rfind('}')
if start_index == -1 or end_index == -1:
raise ValueError("Failed to parse dialogue: No JSON found.")
json_str = raw_content[start_index:end_index+1].strip()
try:
data = json.loads(json_str)
dialogue_list = data.get("dialogue", [])
for d in dialogue_list:
raw_speaker = d.get("speaker", "Jane")
if raw_speaker.lower() == host_name.lower():
d["speaker"] = "Jane"
d["display_speaker"] = host_name
elif raw_speaker.lower() == guest_name.lower():
d["speaker"] = "John"
d["display_speaker"] = guest_name
else:
d["speaker"] = "Jane"
d["display_speaker"] = raw_speaker
new_dialogue_items = []
for d in dialogue_list:
if "display_speaker" not in d:
d["display_speaker"] = d["speaker"]
new_dialogue_items.append(DialogueItem(**d))
return Dialogue(dialogue=new_dialogue_items)
except json.JSONDecodeError as e:
print("[ERROR] JSON decoding (format) failed:", e)
raise ValueError(f"Failed to parse dialogue: {str(e)}")
except Exception as e:
print("[ERROR] JSON decoding failed:", e)
raise ValueError(f"Failed to parse dialogue: {str(e)}")
def transcribe_youtube_video(video_url: str) -> str:
print("[LOG] Transcribing YouTube video via RapidAPI:", video_url)
video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11})", video_url)
if not video_id_match:
raise ValueError(f"Invalid YouTube URL: {video_url}, cannot extract video ID.")
video_id = video_id_match.group(1)
print("[LOG] Extracted video ID:", video_id)
base_url = "https://youtube-transcriptor.p.rapidapi.com/transcript"
params = {"video_id": video_id, "lang": "en"}
headers = {
"x-rapidapi-host": "youtube-transcriptor.p.rapidapi.com",
"x-rapidapi-key": os.environ.get("RAPIDAPI_KEY")
}
try:
response = requests.get(base_url, headers=headers, params=params, timeout=30)
print("[LOG] RapidAPI Response Status Code:", response.status_code)
print("[LOG] RapidAPI Response Body:", response.text)
if response.status_code != 200:
raise ValueError(f"RapidAPI transcription error: {response.status_code}, {response.text}")
data = response.json()
if not isinstance(data, list) or not data:
raise ValueError(f"Unexpected transcript format or empty transcript: {data}")
transcript_as_text = data[0].get('transcriptionAsText', '').strip()
if not transcript_as_text:
raise ValueError("transcriptionAsText field is missing or empty.")
print("[LOG] Transcript retrieval successful.")
print(f"[DEBUG] Transcript Length: {len(transcript_as_text)} characters.")
snippet = transcript_as_text[:200] + "..." if len(transcript_as_text) > 200 else transcript_as_text
print(f"[DEBUG] Transcript Snippet: {snippet}")
return transcript_as_text
except Exception as e:
print("[ERROR] RapidAPI transcription error:", e)
raise ValueError(f"Error transcribing YouTube video via RapidAPI: {str(e)}")
def generate_audio_mp3(text: str, speaker: str) -> str:
try:
import streamlit as st
print(f"[LOG] Generating audio for speaker: {speaker}")
language_selection = st.session_state.get("language_selection", "English (American)")
if language_selection == "English (American)":
print(f"[LOG] Using Deepgram for English (American)")
if speaker in ["John", "Jane"]:
processed_text = text
else:
processed_text = _preprocess_text_for_tts(text, speaker)
deepgram_api_url = "https://api.deepgram.com/v1/speak"
params = {"model": "aura-asteria-en"}
if speaker == "John":
params["model"] = "aura-zeus-en"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
}
body = {"text": processed_text}
response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
if response.status_code != 200:
raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}")
content_type = response.headers.get('Content-Type', '')
if 'audio/mpeg' not in content_type:
raise ValueError("Unexpected Content-Type from Deepgram.")
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
mp3_file.write(chunk)
mp3_path = mp3_file.name
audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
audio_seg = effects.normalize(audio_seg)
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
audio_seg.export(final_mp3_path, format="mp3")
if os.path.exists(mp3_path):
os.remove(mp3_path)
return final_mp3_path
else:
print(f"[LOG] Using Murf API for language: {language_selection}")
if language_selection == "Hinglish":
from indic_transliteration.sanscript import transliterate, DEVANAGARI, IAST
text = transliterate(text, DEVANAGARI, IAST)
api_key = os.environ.get("MURF_API_KEY")
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
"api-key": api_key
}
multi_native_locale = "hi-IN" if language_selection in ["Hinglish", "Hindi"] else "en-IN"
if language_selection == "English (Indian)":
voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
elif language_selection == "Hindi":
voice_id = "hi-IN-kabir" if speaker == "John" else "hi-IN-shweta"
elif language_selection == "Hinglish":
voice_id = "hi-IN-kabir" if speaker == "John" else "hi-IN-shweta"
else:
voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
payload = {
"audioDuration": 0,
"channelType": "MONO",
"encodeAsBase64": False,
"format": "WAV",
"modelVersion": "GEN2",
"multiNativeLocale": multi_native_locale,
"pitch": 0,
"pronunciationDictionary": {},
"rate": 0,
"sampleRate": 48000,
"style": "Conversational",
"text": text,
"variation": 1,
"voiceId": voice_id
}
response = requests.post("https://api.murf.ai/v1/speech/generate", headers=headers, json=payload)
if response.status_code != 200:
raise ValueError(f"Murf API error: {response.status_code}, {response.text}")
json_resp = response.json()
audio_url = json_resp.get("audioFile")
if not audio_url:
raise ValueError("No audio file URL returned by Murf API")
audio_response = requests.get(audio_url)
if audio_response.status_code != 200:
raise ValueError(f"Error fetching audio from {audio_url}")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as wav_file:
wav_file.write(audio_response.content)
wav_path = wav_file.name
audio_seg = AudioSegment.from_file(wav_path, format="wav")
audio_seg = effects.normalize(audio_seg)
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
audio_seg.export(final_mp3_path, format="mp3")
os.remove(wav_path)
return final_mp3_path
except Exception as e:
print("[ERROR] Error generating audio:", e)
raise ValueError(f"Error generating audio: {str(e)}")
def transcribe_youtube_video_OLD_YTDLP(video_url: str) -> str:
pass
def _preprocess_text_for_tts(text: str, speaker: str) -> str:
text = re.sub(r"\bNo\.\b", "Number", text)
text = re.sub(r"\b(?i)SaaS\b", "sass", text)
abbreviations_as_words = {"NASA", "NATO", "UNESCO"}
def insert_periods_for_abbrev(m):
abbr = m.group(0)
if abbr in abbreviations_as_words:
return abbr
return ".".join(list(abbr)) + "."
text = re.sub(r"\b([A-Z]{2,})\b", insert_periods_for_abbrev, text)
text = re.sub(r"\.\.", ".", text)
def remove_periods_for_tts(m):
return m.group().replace(".", " ").strip()
text = re.sub(r"[A-Z]\.[A-Z](?:\.[A-Z])*\.", remove_periods_for_tts, text)
text = re.sub(r"-", " ", text)
text = re.sub(r"\b(ha(ha)?|heh|lol)\b", "(* laughs *)", text, flags=re.IGNORECASE)
text = re.sub(r"\bsigh\b", "(* sighs *)", text, flags=re.IGNORECASE)
text = re.sub(r"\b(groan|moan)\b", "(* groans *)", text, flags=re.IGNORECASE)
if speaker != "Jane":
def insert_thinking_pause(m):
word = m.group(1)
if random.random() < 0.3:
filler = random.choice(['hmm,', 'well,', 'let me see,'])
return f"{word}..., {filler}"
else:
return f"{word}...,"
keywords_pattern = r"\b(important|significant|crucial|point|topic)\b"
text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)
conj_pattern = r"\b(and|but|so|because|however)\b"
text = re.sub(conj_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE)
text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE)
def capitalize_match(m):
return m.group().upper()
text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_match, text)
return text.strip()
def _spell_digits(d: str) -> str:
digit_map = {
'0': 'zero', '1': 'one', '2': 'two', '3': 'three',
'4': 'four', '5': 'five', '6': 'six', '7': 'seven',
'8': 'eight', '9': 'nine'
}
return " ".join(digit_map[ch] for ch in d if ch in digit_map)
def mix_with_bg_music(spoken: AudioSegment, custom_music_path=None) -> AudioSegment:
if custom_music_path:
music_path = custom_music_path
else:
music_path = "bg_music.mp3"
try:
bg_music = AudioSegment.from_file(music_path, format="mp3")
except Exception as e:
print("[ERROR] Failed to load background music:", e)
return spoken
bg_music = bg_music - 18.0
total_length_ms = len(spoken) + 2000
looped_music = AudioSegment.empty()
while len(looped_music) < total_length_ms:
looped_music += bg_music
looped_music = looped_music[:total_length_ms]
final_mix = looped_music.overlay(spoken, position=2000)
return final_mix
def call_groq_api_for_qa(system_prompt: str) -> str:
#Kept for use, Changed model
try:
headers = {
"Authorization": f"Bearer {os.environ.get('GROQ_API_KEY')}", # Use GROQ API KEY
"Content-Type": "application/json",
"Accept": "application/json"
}
data = {
"model": "deepseek-r1-distill-llama-70b", #Using Deepseek
"messages": [{"role": "user", "content": system_prompt}],
"max_tokens": 512,
"temperature": 0.7
}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", #Using groq endpoint
headers=headers, data=json.dumps(data))
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"].strip()
except Exception as e:
print("[ERROR] Groq API error:", e)
fallback = {"speaker": "John", "text": "I'm sorry, I'm having trouble answering right now."}
return json.dumps(fallback)
# --- Agent and Tavily Integration ---
def run_research_agent(topic: str, report_type: str = "research_report", max_results: int = 10) -> str:
"""
Runs the new research agent to generate a research report. This version uses
Tavily for search and Firecrawl for content extraction.
"""
print(f"[LOG] Starting research agent for topic: {topic}")
try:
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY"))
search_results = tavily_client.search(query=topic, max_results=max_results).results
if not search_results:
return "No relevant search results found."
print(f"[DEBUG] Tavily results: {search_results}")
# Use Firecrawl to scrape the content of each URL
combined_content = ""
for result in search_results:
url = result.url # Use dot notation to access attributes
print(f"[LOG] Scraping URL with Firecrawl: {url}")
headers = {'Authorization': f'Bearer {os.environ.get("FIRECRAWL_API_KEY")}'}
payload = {"url": url, "formats": ["markdown"], "onlyMainContent": True}
try:
response = requests.post("https://api.firecrawl.dev/v1/scrape", headers=headers, json=payload)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
data = response.json()
# print(f"[DEBUG] Firecrawl response: {data}") #keep commented
if data.get('success') and 'markdown' in data.get('data', {}):
combined_content += data['data']['markdown'] + "\n\n"
else:
print(f"[WARNING] Firecrawl scrape failed or no markdown content for {url}: {data.get('error')}")
except requests.RequestException as e:
print(f"[ERROR] Error during Firecrawl request for {url}: {e}")
continue # Continue to the next URL
if not combined_content:
return "Could not retrieve content from any of the search results."
# Use Groq LLM to generate the report
prompt = f"""You are a world-class researcher, and you are tasked to write a comprehensive research report on the following topic:
{topic}
Use the following pieces of information, gathered from various web sources, to construct your report:
{combined_content}
Compile and synthesize the information to create a well-structured and informative research report. Include a title, introduction, main body with clearly defined sections, and a conclusion. Cite sources appropriately in the context. Do not hallucinate or make anything up.
"""
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
response = groq_client.chat.completions.create(
messages=[
{"role": "user", "content": prompt}
],
model="deepseek-r1-distill-llama-70b",
temperature = 0.2
)
report_text = response.choices[0].message.content
#print(f"[DEBUG] Raw report from LLM:\n{report_text}") #Keep commented out unless you have a very specific reason
structured_report = generate_report(report_text) # Use your report structuring function
return structured_report
except Exception as e:
print(f"[ERROR] Error in research agent: {e}")
return f"Sorry, I encountered an error during research: {e}" |