File size: 22,323 Bytes
e19a7d9
66b4c56
26794f8
e19a7d9
 
66b4c56
de89d5c
26794f8
e19a7d9
cb1debc
e19a7d9
cb1debc
de89d5c
cb1debc
de89d5c
efe25f9
cb1debc
 
 
 
22de709
e19a7d9
36b966f
 
e19a7d9
 
 
 
 
8139f36
 
 
 
 
 
 
 
 
 
 
 
 
 
12811af
8139f36
 
 
 
 
 
 
cb1debc
 
 
 
 
 
 
 
de89d5c
2ae64da
8139f36
 
 
 
 
 
 
 
 
 
 
cb1debc
8139f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a91583a
8139f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401e4f3
8139f36
 
 
 
 
b187370
8139f36
 
 
 
 
 
 
 
 
 
 
5857c7b
8139f36
 
b187370
8139f36
 
 
 
 
 
 
 
 
 
6ff5ac5
8139f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67c5a3a
 
 
 
 
8139f36
de89d5c
8139f36
 
 
26794f8
8139f36
 
5d6a0d4
5857c7b
 
 
 
 
8f14416
5857c7b
 
8482488
5857c7b
 
 
 
 
 
8482488
5857c7b
 
 
 
8482488
 
5857c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388741c
5857c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388741c
5857c7b
388741c
5857c7b
388741c
5857c7b
 
 
 
 
388741c
5857c7b
 
 
 
 
 
 
 
22de709
de89d5c
cb1debc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import os
import re
import json
import requests
import tempfile
from bs4 import BeautifulSoup
from typing import List, Literal, Optional
from pydantic import BaseModel
from pydub import AudioSegment, effects
from transformers import pipeline
import tiktoken
from groq import Groq  # Retained for LLM interaction
import numpy as np
import torch
import random

# --- CORRECT IMPORTS ---
# No more sys.path modification!
from report_structure import generate_report  # For report structuring
from tavily import TavilyClient

class DialogueItem(BaseModel):
    speaker: Literal["Jane", "John"]
    display_speaker: str = "Jane"
    text: str

class Dialogue(BaseModel):
    dialogue: List[DialogueItem]

asr_pipeline = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-tiny.en",
    device=0 if torch.cuda.is_available() else -1
)

def truncate_text(text, max_tokens=2048):
    print("[LOG] Truncating text if needed.")
    tokenizer = tiktoken.get_encoding("cl100k_base")
    tokens = tokenizer.encode(text)
    if len(tokens) > max_tokens:
        print("[LOG] Text too long, truncating.")
        return tokenizer.decode(tokens[:max_tokens])
    return text


def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
    print(f"[LOG] Shifting pitch by {semitones} semitones.")
    new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
    shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
    return shifted_audio.set_frame_rate(audio.frame_rate)

# --- Functions no longer needed ---
# def is_sufficient(...)
# def query_llm_for_additional_info(...)
# def research_topic(...)
# def fetch_wikipedia_summary(...)
# def fetch_rss_feed(...)
# def find_relevant_article(...)
# def fetch_article_text(...)


def generate_script(
    system_prompt: str,
    input_text: str,
    tone: str,
    target_length: str,
    host_name: str = "Jane",
    guest_name: str = "John",
    sponsor_style: str = "Separate Break",
    sponsor_provided=None
):
    print("[LOG] Generating script with tone:", tone, "and length:", target_length)
    import streamlit as st  # Import streamlit here, where it's used
    if (host_name == "Jane" or not host_name) and st.session_state.get("language_selection") in ["English (Indian)", "Hinglish", "Hindi"]:
        host_name = "Isha"
    if (guest_name == "John" or not guest_name) and st.session_state.get("language_selection") in ["English (Indian)", "Hinglish", "Hindi"]:
        guest_name = "Aarav"

    words_per_minute = 150
    numeric_minutes = 3
    match = re.search(r"(\d+)", target_length)
    if match:
        numeric_minutes = int(match.group(1))

    min_words = max(50, numeric_minutes * 100)
    max_words = numeric_minutes * words_per_minute

    tone_map = {
        "Humorous": "funny and exciting, makes people chuckle",
        "Formal": "business-like, well-structured, professional",
        "Casual": "like a conversation between close friends, relaxed and informal",
        "Youthful": "like how teenagers might chat, energetic and lively"
    }
    chosen_tone = tone_map.get(tone, "casual")

    if sponsor_provided:
        if sponsor_style == "Separate Break":
            sponsor_instructions = (
                "If sponsor content is provided, include it in a separate ad break (~30 seconds). "
                "Use phrasing like 'Now a word from our sponsor...' and end with 'Back to the show' or similar."
            )
        else:
            sponsor_instructions = (
                "If sponsor content is provided, blend it naturally (~30 seconds) into the conversation. "
                "Avoid abrupt transitions."
            )
    else:
        sponsor_instructions = ""

    prompt = (
        f"{system_prompt}\n"
        f"TONE: {chosen_tone}\n"
        f"TARGET LENGTH: {target_length} (~{min_words}-{max_words} words)\n"
        f"INPUT TEXT: {input_text}\n\n"
        f"# Sponsor Style Instruction:\n{sponsor_instructions}\n\n"
        "Please provide the output in the following JSON format without any additional text:\n\n"
        "{\n"
        '    "dialogue": [\n'
        '        {\n'
        '            "speaker": "Jane",\n'
        '            "text": "..." \n'
        '        },\n'
        '        {\n'
        '            "speaker": "John",\n'
        '            "text": "..." \n'
        '        }\n'
        "    ]\n"
        "}"
    )
    print("[LOG] Sending prompt to Deepseek R1 via OpenRouter:")
    print(prompt)

    # Add language-specific instructions
    if st.session_state.get("language_selection") == "Hinglish":
        prompt += "\n\nPlease generate the script in Romanized Hindi.\n"
    elif st.session_state.get("language_selection") == "Hindi":
        prompt += "\n\nPlease generate the script exclusively in Hindi, using only Hindi vocabulary and grammar without any English words or phrases.\n"

    try:
        headers = {
            "Authorization": f"Bearer {os.environ.get('DEEPSEEK_API_KEY')}",
            "Content-Type": "application/json"
        }
        data = {
            "model": "deepseek/deepseek-r1",
            "messages": [{"role": "user", "content": prompt}],
            "max_tokens": 2048,
            "temperature": 0.7
        }
        response = requests.post("https://openrouter.ai/api/v1/chat/completions",
                                    headers=headers, data=json.dumps(data))
        response.raise_for_status()
        raw_content = response.json()["choices"][0]["message"]["content"].strip()
    except Exception as e:
        print("[ERROR] Deepseek API error:", e)
        raise ValueError(f"Error communicating with Deepseek API: {str(e)}")

    start_index = raw_content.find('{')
    end_index = raw_content.rfind('}')
    if start_index == -1 or end_index == -1:
        raise ValueError("Failed to parse dialogue: No JSON found.")

    json_str = raw_content[start_index:end_index+1].strip()

    try:
        data = json.loads(json_str)
        dialogue_list = data.get("dialogue", [])

        for d in dialogue_list:
            raw_speaker = d.get("speaker", "Jane")
            if raw_speaker.lower() == host_name.lower():
                d["speaker"] = "Jane"
                d["display_speaker"] = host_name
            elif raw_speaker.lower() == guest_name.lower():
                d["speaker"] = "John"
                d["display_speaker"] = guest_name
            else:
                d["speaker"] = "Jane"
                d["display_speaker"] = raw_speaker

            new_dialogue_items = []
            for d in dialogue_list:
                if "display_speaker" not in d:
                    d["display_speaker"] = d["speaker"]
                new_dialogue_items.append(DialogueItem(**d))

            return Dialogue(dialogue=new_dialogue_items)
    except json.JSONDecodeError as e:
        print("[ERROR] JSON decoding (format) failed:", e)
        raise ValueError(f"Failed to parse dialogue: {str(e)}")
    except Exception as e:
        print("[ERROR] JSON decoding failed:", e)
        raise ValueError(f"Failed to parse dialogue: {str(e)}")

    def transcribe_youtube_video(video_url: str) -> str:
        print("[LOG] Transcribing YouTube video via RapidAPI:", video_url)
        video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11})", video_url)
        if not video_id_match:
            raise ValueError(f"Invalid YouTube URL: {video_url}, cannot extract video ID.")

        video_id = video_id_match.group(1)
        print("[LOG] Extracted video ID:", video_id)

        base_url = "https://youtube-transcriptor.p.rapidapi.com/transcript"
        params = {"video_id": video_id, "lang": "en"}
        headers = {
            "x-rapidapi-host": "youtube-transcriptor.p.rapidapi.com",
            "x-rapidapi-key": os.environ.get("RAPIDAPI_KEY")
        }

        try:
            response = requests.get(base_url, headers=headers, params=params, timeout=30)
            print("[LOG] RapidAPI Response Status Code:", response.status_code)
            print("[LOG] RapidAPI Response Body:", response.text)

            if response.status_code != 200:
                raise ValueError(f"RapidAPI transcription error: {response.status_code}, {response.text}")

            data = response.json()
            if not isinstance(data, list) or not data:
                raise ValueError(f"Unexpected transcript format or empty transcript: {data}")

            transcript_as_text = data[0].get('transcriptionAsText', '').strip()
            if not transcript_as_text:
                raise ValueError("transcriptionAsText field is missing or empty.")

            print("[LOG] Transcript retrieval successful.")
            print(f"[DEBUG] Transcript Length: {len(transcript_as_text)} characters.")
            snippet = transcript_as_text[:200] + "..." if len(transcript_as_text) > 200 else transcript_as_text
            print(f"[DEBUG] Transcript Snippet: {snippet}")

            return transcript_as_text
        except Exception as e:
            print("[ERROR] RapidAPI transcription error:", e)
            raise ValueError(f"Error transcribing YouTube video via RapidAPI: {str(e)}")

    def generate_audio_mp3(text: str, speaker: str) -> str:
        try:
            import streamlit as st
            print(f"[LOG] Generating audio for speaker: {speaker}")
            language_selection = st.session_state.get("language_selection", "English (American)")
            if language_selection == "English (American)":
                print(f"[LOG] Using Deepgram for English (American)")
                if speaker in ["John", "Jane"]:
                    processed_text = text
                else:
                    processed_text = _preprocess_text_for_tts(text, speaker)
                deepgram_api_url = "https://api.deepgram.com/v1/speak"
                params = {"model": "aura-asteria-en"}
                if speaker == "John":
                    params["model"] = "aura-zeus-en"
                headers = {
                    "Accept": "audio/mpeg",
                    "Content-Type": "application/json",
                    "Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
                }
                body = {"text": processed_text}
                response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
                if response.status_code != 200:
                    raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}")
                content_type = response.headers.get('Content-Type', '')
                if 'audio/mpeg' not in content_type:
                    raise ValueError("Unexpected Content-Type from Deepgram.")
                with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
                    for chunk in response.iter_content(chunk_size=8192):
                        if chunk:
                            mp3_file.write(chunk)
                    mp3_path = mp3_file.name
                audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
                audio_seg = effects.normalize(audio_seg)
                final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
                audio_seg.export(final_mp3_path, format="mp3")
                if os.path.exists(mp3_path):
                    os.remove(mp3_path)
                return final_mp3_path
            else:
                print(f"[LOG] Using Murf API for language: {language_selection}")
                if language_selection == "Hinglish":
                    from indic_transliteration.sanscript import transliterate, DEVANAGARI, IAST
                    text = transliterate(text, DEVANAGARI, IAST)
                api_key = os.environ.get("MURF_API_KEY")
                headers = {
                    "Content-Type": "application/json",
                    "Accept": "application/json",
                    "api-key": api_key
                }
                multi_native_locale = "hi-IN" if language_selection in ["Hinglish", "Hindi"] else "en-IN"
                if language_selection == "English (Indian)":
                    voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
                elif language_selection == "Hindi":
                    voice_id = "hi-IN-kabir" if speaker == "John" else "hi-IN-shweta"
                elif language_selection == "Hinglish":
                    voice_id = "hi-IN-kabir" if speaker == "John" else "hi-IN-shweta"
                else:
                    voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
                payload = {
                    "audioDuration": 0,
                    "channelType": "MONO",
                    "encodeAsBase64": False,
                    "format": "WAV",
                    "modelVersion": "GEN2",
                    "multiNativeLocale": multi_native_locale,
                    "pitch": 0,
                    "pronunciationDictionary": {},
                    "rate": 0,
                    "sampleRate": 48000,
                    "style": "Conversational",
                    "text": text,
                    "variation": 1,
                    "voiceId": voice_id
                }
                response = requests.post("https://api.murf.ai/v1/speech/generate", headers=headers, json=payload)
                if response.status_code != 200:
                    raise ValueError(f"Murf API error: {response.status_code}, {response.text}")
                json_resp = response.json()
                audio_url = json_resp.get("audioFile")
                if not audio_url:
                    raise ValueError("No audio file URL returned by Murf API")
                audio_response = requests.get(audio_url)
                if audio_response.status_code != 200:
                    raise ValueError(f"Error fetching audio from {audio_url}")
                with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as wav_file:
                    wav_file.write(audio_response.content)
                    wav_path = wav_file.name
                audio_seg = AudioSegment.from_file(wav_path, format="wav")
                audio_seg = effects.normalize(audio_seg)
                final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
                audio_seg.export(final_mp3_path, format="mp3")
                os.remove(wav_path)
                return final_mp3_path
        except Exception as e:
            print("[ERROR] Error generating audio:", e)
            raise ValueError(f"Error generating audio: {str(e)}")

    def transcribe_youtube_video_OLD_YTDLP(video_url: str) -> str:
        pass

    def _preprocess_text_for_tts(text: str, speaker: str) -> str:
        text = re.sub(r"\bNo\.\b", "Number", text)
        text = re.sub(r"\b(?i)SaaS\b", "sass", text)
        abbreviations_as_words = {"NASA", "NATO", "UNESCO"}
        def insert_periods_for_abbrev(m):
            abbr = m.group(0)
            if abbr in abbreviations_as_words:
                return abbr
            return ".".join(list(abbr)) + "."
        text = re.sub(r"\b([A-Z]{2,})\b", insert_periods_for_abbrev, text)
        text = re.sub(r"\.\.", ".", text)
        def remove_periods_for_tts(m):
            return m.group().replace(".", " ").strip()
        text = re.sub(r"[A-Z]\.[A-Z](?:\.[A-Z])*\.", remove_periods_for_tts, text)
        text = re.sub(r"-", " ", text)
        text = re.sub(r"\b(ha(ha)?|heh|lol)\b", "(* laughs *)", text, flags=re.IGNORECASE)
        text = re.sub(r"\bsigh\b", "(* sighs *)", text, flags=re.IGNORECASE)
        text = re.sub(r"\b(groan|moan)\b", "(* groans *)", text, flags=re.IGNORECASE)
        if speaker != "Jane":
            def insert_thinking_pause(m):
                word = m.group(1)
                if random.random() < 0.3:
                    filler = random.choice(['hmm,', 'well,', 'let me see,'])
                    return f"{word}..., {filler}"
                else:
                    return f"{word}...,"
            keywords_pattern = r"\b(important|significant|crucial|point|topic)\b"
            text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)
            conj_pattern = r"\b(and|but|so|because|however)\b"
            text = re.sub(conj_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE)
        text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE)
        def capitalize_match(m):
            return m.group().upper()
        text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_match, text)
        return text.strip()

    def _spell_digits(d: str) -> str:
        digit_map = {
            '0': 'zero', '1': 'one', '2': 'two', '3': 'three',
            '4': 'four', '5': 'five', '6': 'six', '7': 'seven',
            '8': 'eight', '9': 'nine'
        }
        return " ".join(digit_map[ch] for ch in d if ch in digit_map)

    def mix_with_bg_music(spoken: AudioSegment, custom_music_path=None) -> AudioSegment:
        if custom_music_path:
            music_path = custom_music_path
        else:
            music_path = "bg_music.mp3"

        try:
            bg_music = AudioSegment.from_file(music_path, format="mp3")
        except Exception as e:
            print("[ERROR] Failed to load background music:", e)
            return spoken

        bg_music = bg_music - 18.0
        total_length_ms = len(spoken) + 2000
        looped_music = AudioSegment.empty()
        while len(looped_music) < total_length_ms:
            looped_music += bg_music
        looped_music = looped_music[:total_length_ms]
        final_mix = looped_music.overlay(spoken, position=2000)
        return final_mix

    def call_groq_api_for_qa(system_prompt: str) -> str:
        #Kept for use, Changed model
        try:
            headers = {
                "Authorization": f"Bearer {os.environ.get('GROQ_API_KEY')}",  # Use GROQ API KEY
                "Content-Type": "application/json",
                "Accept": "application/json"
            }
            data = {
                "model": "deepseek-r1-distill-llama-70b", #Using Deepseek
                "messages": [{"role": "user", "content": system_prompt}],
                "max_tokens": 512,
                "temperature": 0.7
            }
            response = requests.post("https://api.groq.com/openai/v1/chat/completions", #Using groq endpoint
                                    headers=headers, data=json.dumps(data))
            response.raise_for_status()
            return response.json()["choices"][0]["message"]["content"].strip()
        except Exception as e:
            print("[ERROR] Groq API error:", e)
            fallback = {"speaker": "John", "text": "I'm sorry, I'm having trouble answering right now."}
            return json.dumps(fallback)

    # --- Agent and Tavily Integration ---
def run_research_agent(topic: str, report_type: str = "research_report", max_results: int = 10) -> str:
    """
    Runs the new research agent to generate a research report. This version uses
    Tavily for search and Firecrawl for content extraction.
    """
    print(f"[LOG] Starting research agent for topic: {topic}")
    try:
        tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY"))
        search_results = tavily_client.search(query=topic, max_results=max_results).results

        if not search_results:
            return "No relevant search results found."

        print(f"[DEBUG] Tavily results: {search_results}")

        # Use Firecrawl to scrape the content of each URL
        combined_content = ""
        for result in search_results:
            url = result.url  # Use dot notation to access attributes
            print(f"[LOG] Scraping URL with Firecrawl: {url}")
            headers = {'Authorization': f'Bearer {os.environ.get("FIRECRAWL_API_KEY")}'}
            payload = {"url": url, "formats": ["markdown"], "onlyMainContent": True}
            try:
                response = requests.post("https://api.firecrawl.dev/v1/scrape", headers=headers, json=payload)
                response.raise_for_status()  # Raise HTTPError for bad responses (4xx or 5xx)
                data = response.json()
                # print(f"[DEBUG] Firecrawl response: {data}") #keep commented

                if data.get('success') and 'markdown' in data.get('data', {}):
                    combined_content += data['data']['markdown'] + "\n\n"
                else:
                    print(f"[WARNING] Firecrawl scrape failed or no markdown content for {url}: {data.get('error')}")

            except requests.RequestException as e:
                print(f"[ERROR] Error during Firecrawl request for {url}: {e}")
                continue  # Continue to the next URL

        if not combined_content:
            return "Could not retrieve content from any of the search results."

        # Use Groq LLM to generate the report
        prompt = f"""You are a world-class researcher, and you are tasked to write a comprehensive research report on the following topic:

        {topic}

        Use the following pieces of information, gathered from various web sources, to construct your report:

        {combined_content}

        Compile and synthesize the information to create a well-structured and informative research report.  Include a title, introduction, main body with clearly defined sections, and a conclusion. Cite sources appropriately in the context. Do not hallucinate or make anything up.
        """

        groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
        response = groq_client.chat.completions.create(
            messages=[
                {"role": "user", "content": prompt}
            ],
             model="deepseek-r1-distill-llama-70b",
            temperature = 0.2
        )
        report_text = response.choices[0].message.content
        #print(f"[DEBUG] Raw report from LLM:\n{report_text}") #Keep commented out unless you have a very specific reason

        structured_report = generate_report(report_text)  # Use your report structuring function
        return structured_report


    except Exception as e:
        print(f"[ERROR] Error in research agent: {e}")
        return f"Sorry, I encountered an error during research: {e}"