Spaces:
Running
Running
Delete utils.py
Browse files
utils.py
DELETED
@@ -1,554 +0,0 @@
|
|
1 |
-
# utils.py
|
2 |
-
|
3 |
-
import os
|
4 |
-
import re
|
5 |
-
import json
|
6 |
-
import requests
|
7 |
-
import tempfile
|
8 |
-
from bs4 import BeautifulSoup
|
9 |
-
from typing import List, Literal
|
10 |
-
from pydantic import BaseModel
|
11 |
-
from pydub import AudioSegment, effects
|
12 |
-
from transformers import pipeline
|
13 |
-
import yt_dlp
|
14 |
-
import tiktoken
|
15 |
-
from groq import Groq
|
16 |
-
import numpy as np
|
17 |
-
import torch
|
18 |
-
import random
|
19 |
-
|
20 |
-
class DialogueItem(BaseModel):
|
21 |
-
speaker: Literal["Jane", "John"]
|
22 |
-
text: str
|
23 |
-
|
24 |
-
class Dialogue(BaseModel):
|
25 |
-
dialogue: List[DialogueItem]
|
26 |
-
|
27 |
-
# Initialize Whisper ASR pipeline (unused for YouTube now, but still available for local audio)
|
28 |
-
asr_pipeline = pipeline(
|
29 |
-
"automatic-speech-recognition",
|
30 |
-
model="openai/whisper-tiny.en",
|
31 |
-
device=0 if torch.cuda.is_available() else -1
|
32 |
-
)
|
33 |
-
|
34 |
-
def truncate_text(text, max_tokens=2048):
|
35 |
-
"""
|
36 |
-
If the text exceeds the max token limit (approx. 2,048), truncate it
|
37 |
-
to avoid exceeding the model's context window.
|
38 |
-
"""
|
39 |
-
print("[LOG] Truncating text if needed.")
|
40 |
-
tokenizer = tiktoken.get_encoding("cl100k_base")
|
41 |
-
tokens = tokenizer.encode(text)
|
42 |
-
if len(tokens) > max_tokens:
|
43 |
-
print("[LOG] Text too long, truncating.")
|
44 |
-
return tokenizer.decode(tokens[:max_tokens])
|
45 |
-
return text
|
46 |
-
|
47 |
-
def extract_text_from_url(url):
|
48 |
-
"""
|
49 |
-
Fetches and extracts readable text from a given URL
|
50 |
-
(stripping out scripts, styles, etc.).
|
51 |
-
"""
|
52 |
-
print("[LOG] Extracting text from URL:", url)
|
53 |
-
try:
|
54 |
-
response = requests.get(url)
|
55 |
-
if response.status_code != 200:
|
56 |
-
print(f"[ERROR] Failed to fetch URL: {url} with status code {response.status_code}")
|
57 |
-
return ""
|
58 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
59 |
-
for script in soup(["script", "style"]):
|
60 |
-
script.decompose()
|
61 |
-
text = soup.get_text(separator=' ')
|
62 |
-
print("[LOG] Text extraction from URL successful.")
|
63 |
-
return text
|
64 |
-
except Exception as e:
|
65 |
-
print(f"[ERROR] Exception during text extraction from URL: {e}")
|
66 |
-
return ""
|
67 |
-
|
68 |
-
def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
|
69 |
-
"""
|
70 |
-
Shifts the pitch of an AudioSegment by a given number of semitones.
|
71 |
-
Positive semitones shift the pitch up, negative shifts it down.
|
72 |
-
"""
|
73 |
-
print(f"[LOG] Shifting pitch by {semitones} semitones.")
|
74 |
-
new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
|
75 |
-
shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
|
76 |
-
return shifted_audio.set_frame_rate(audio.frame_rate)
|
77 |
-
|
78 |
-
def is_sufficient(text: str, min_word_count: int = 500) -> bool:
|
79 |
-
"""
|
80 |
-
Checks if the fetched text meets our sufficiency criteria
|
81 |
-
(e.g., at least 500 words).
|
82 |
-
"""
|
83 |
-
word_count = len(text.split())
|
84 |
-
print(f"[DEBUG] Aggregated word count: {word_count}")
|
85 |
-
return word_count >= min_word_count
|
86 |
-
|
87 |
-
def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
|
88 |
-
"""
|
89 |
-
Queries the Groq API to retrieve more info from the LLM's knowledge base.
|
90 |
-
Appends it to our aggregated info if found.
|
91 |
-
"""
|
92 |
-
print("[LOG] Querying LLM for additional information.")
|
93 |
-
system_prompt = (
|
94 |
-
"You are an AI assistant with extensive knowledge up to 2023-10. "
|
95 |
-
"Provide additional relevant information on the following topic based on your knowledge base.\n\n"
|
96 |
-
f"Topic: {topic}\n\n"
|
97 |
-
f"Existing Information: {existing_text}\n\n"
|
98 |
-
"Please add more insightful details, facts, and perspectives to enhance the understanding of the topic."
|
99 |
-
)
|
100 |
-
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
101 |
-
try:
|
102 |
-
response = groq_client.chat.completions.create(
|
103 |
-
messages=[{"role": "system", "content": system_prompt}],
|
104 |
-
model="llama-3.3-70b-versatile",
|
105 |
-
max_tokens=1024,
|
106 |
-
temperature=0.7
|
107 |
-
)
|
108 |
-
except Exception as e:
|
109 |
-
print("[ERROR] Groq API error during fallback:", e)
|
110 |
-
return ""
|
111 |
-
additional_info = response.choices[0].message.content.strip()
|
112 |
-
print("[DEBUG] Additional information from LLM:")
|
113 |
-
print(additional_info)
|
114 |
-
return additional_info
|
115 |
-
|
116 |
-
def research_topic(topic: str) -> str:
|
117 |
-
"""
|
118 |
-
Gathers info from various RSS feeds and Wikipedia. If needed, queries the LLM
|
119 |
-
for more data if the aggregated text is insufficient.
|
120 |
-
"""
|
121 |
-
sources = {
|
122 |
-
"BBC": "https://feeds.bbci.co.uk/news/rss.xml",
|
123 |
-
"CNN": "http://rss.cnn.com/rss/edition.rss",
|
124 |
-
"Associated Press": "https://apnews.com/apf-topnews",
|
125 |
-
"NDTV": "https://www.ndtv.com/rss/top-stories",
|
126 |
-
"Times of India": "https://timesofindia.indiatimes.com/rssfeeds/296589292.cms",
|
127 |
-
"The Hindu": "https://www.thehindu.com/news/national/kerala/rssfeed.xml",
|
128 |
-
"Economic Times": "https://economictimes.indiatimes.com/rssfeeds/1977021501.cms",
|
129 |
-
"Google News - Custom": f"https://news.google.com/rss/search?q={requests.utils.quote(topic)}&hl=en-IN&gl=IN&ceid=IN:en",
|
130 |
-
}
|
131 |
-
|
132 |
-
summary_parts = []
|
133 |
-
|
134 |
-
# Wikipedia summary
|
135 |
-
wiki_summary = fetch_wikipedia_summary(topic)
|
136 |
-
if wiki_summary:
|
137 |
-
summary_parts.append(f"From Wikipedia: {wiki_summary}")
|
138 |
-
|
139 |
-
# For each RSS
|
140 |
-
for name, url in sources.items():
|
141 |
-
try:
|
142 |
-
items = fetch_rss_feed(url)
|
143 |
-
if not items:
|
144 |
-
continue
|
145 |
-
title, desc, link = find_relevant_article(items, topic, min_match=2)
|
146 |
-
if link:
|
147 |
-
article_text = fetch_article_text(link)
|
148 |
-
if article_text:
|
149 |
-
summary_parts.append(f"From {name}: {article_text}")
|
150 |
-
else:
|
151 |
-
summary_parts.append(f"From {name}: {title} - {desc}")
|
152 |
-
except Exception as e:
|
153 |
-
print(f"[ERROR] Error fetching from {name} RSS feed:", e)
|
154 |
-
continue
|
155 |
-
|
156 |
-
aggregated_info = " ".join(summary_parts)
|
157 |
-
print("[DEBUG] Aggregated info from primary sources:")
|
158 |
-
print(aggregated_info)
|
159 |
-
|
160 |
-
# If not enough data, fallback to LLM
|
161 |
-
if not is_sufficient(aggregated_info):
|
162 |
-
print("[LOG] Insufficient info from primary sources. Fallback to LLM.")
|
163 |
-
additional_info = query_llm_for_additional_info(topic, aggregated_info)
|
164 |
-
if additional_info:
|
165 |
-
aggregated_info += " " + additional_info
|
166 |
-
else:
|
167 |
-
print("[ERROR] Failed to retrieve additional info from LLM.")
|
168 |
-
|
169 |
-
if not aggregated_info:
|
170 |
-
return f"Sorry, I couldn't find recent information on '{topic}'."
|
171 |
-
|
172 |
-
return aggregated_info
|
173 |
-
|
174 |
-
def fetch_wikipedia_summary(topic: str) -> str:
|
175 |
-
"""
|
176 |
-
Fetch a quick Wikipedia summary of the topic via the official Wikipedia API.
|
177 |
-
"""
|
178 |
-
print("[LOG] Fetching Wikipedia summary for:", topic)
|
179 |
-
try:
|
180 |
-
search_url = (
|
181 |
-
f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}"
|
182 |
-
"&limit=1&namespace=0&format=json"
|
183 |
-
)
|
184 |
-
resp = requests.get(search_url)
|
185 |
-
if resp.status_code != 200:
|
186 |
-
print(f"[ERROR] Failed to fetch Wikipedia search results for {topic}")
|
187 |
-
return ""
|
188 |
-
data = resp.json()
|
189 |
-
if len(data) > 1 and data[1]:
|
190 |
-
title = data[1][0]
|
191 |
-
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{requests.utils.quote(title)}"
|
192 |
-
s_resp = requests.get(summary_url)
|
193 |
-
if s_resp.status_code == 200:
|
194 |
-
s_data = s_resp.json()
|
195 |
-
if "extract" in s_data:
|
196 |
-
print("[LOG] Wikipedia summary fetched successfully.")
|
197 |
-
return s_data["extract"]
|
198 |
-
return ""
|
199 |
-
except Exception as e:
|
200 |
-
print(f"[ERROR] Exception during Wikipedia summary fetch: {e}")
|
201 |
-
return ""
|
202 |
-
|
203 |
-
def fetch_rss_feed(feed_url: str) -> list:
|
204 |
-
"""
|
205 |
-
Pulls RSS feed data from a given URL and returns items.
|
206 |
-
"""
|
207 |
-
print("[LOG] Fetching RSS feed:", feed_url)
|
208 |
-
try:
|
209 |
-
resp = requests.get(feed_url)
|
210 |
-
if resp.status_code != 200:
|
211 |
-
print(f"[ERROR] Failed to fetch RSS feed: {feed_url}")
|
212 |
-
return []
|
213 |
-
soup = BeautifulSoup(resp.content, "xml")
|
214 |
-
items = soup.find_all("item")
|
215 |
-
return items
|
216 |
-
except Exception as e:
|
217 |
-
print(f"[ERROR] Exception fetching RSS feed {feed_url}: {e}")
|
218 |
-
return []
|
219 |
-
|
220 |
-
def find_relevant_article(items, topic: str, min_match=2) -> tuple:
|
221 |
-
"""
|
222 |
-
Check each article in the RSS feed for mention of the topic
|
223 |
-
by counting the number of keyword matches.
|
224 |
-
"""
|
225 |
-
print("[LOG] Finding relevant articles...")
|
226 |
-
keywords = re.findall(r'\w+', topic.lower())
|
227 |
-
for item in items:
|
228 |
-
title = item.find("title").get_text().strip() if item.find("title") else ""
|
229 |
-
description = item.find("description").get_text().strip() if item.find("description") else ""
|
230 |
-
text = (title + " " + description).lower()
|
231 |
-
matches = sum(1 for kw in keywords if kw in text)
|
232 |
-
if matches >= min_match:
|
233 |
-
link = item.find("link").get_text().strip() if item.find("link") else ""
|
234 |
-
print(f"[LOG] Relevant article found: {title}")
|
235 |
-
return title, description, link
|
236 |
-
return None, None, None
|
237 |
-
|
238 |
-
def fetch_article_text(link: str) -> str:
|
239 |
-
"""
|
240 |
-
Fetch the article text from the given link (first 5 paragraphs).
|
241 |
-
"""
|
242 |
-
print("[LOG] Fetching article text from:", link)
|
243 |
-
if not link:
|
244 |
-
print("[LOG] No link provided for article text.")
|
245 |
-
return ""
|
246 |
-
try:
|
247 |
-
resp = requests.get(link)
|
248 |
-
if resp.status_code != 200:
|
249 |
-
print(f"[ERROR] Failed to fetch article from {link}")
|
250 |
-
return ""
|
251 |
-
soup = BeautifulSoup(resp.text, 'html.parser')
|
252 |
-
paragraphs = soup.find_all("p")
|
253 |
-
text = " ".join(p.get_text() for p in paragraphs[:5]) # first 5 paragraphs
|
254 |
-
print("[LOG] Article text fetched successfully.")
|
255 |
-
return text.strip()
|
256 |
-
except Exception as e:
|
257 |
-
print(f"[ERROR] Error fetching article text: {e}")
|
258 |
-
return ""
|
259 |
-
|
260 |
-
def generate_script(system_prompt: str, input_text: str, tone: str, target_length: str):
|
261 |
-
"""
|
262 |
-
Sends the system_prompt plus input_text to the Groq LLM to generate a
|
263 |
-
multi-speaker Dialogue in JSON. We parse and return it as a Dialogue object.
|
264 |
-
"""
|
265 |
-
print("[LOG] Generating script with tone:", tone, "and length:", target_length)
|
266 |
-
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
267 |
-
|
268 |
-
# Map length string to word ranges
|
269 |
-
length_mapping = {
|
270 |
-
"1-3 Mins": (200, 450),
|
271 |
-
"3-5 Mins": (450, 750),
|
272 |
-
"5-10 Mins": (750, 1500),
|
273 |
-
"10-20 Mins": (1500, 3000)
|
274 |
-
}
|
275 |
-
min_words, max_words = length_mapping.get(target_length, (200, 450))
|
276 |
-
|
277 |
-
tone_description = {
|
278 |
-
"Humorous": "funny and exciting, makes people chuckle",
|
279 |
-
"Formal": "business-like, well-structured, professional",
|
280 |
-
"Casual": "like a conversation between close friends, relaxed and informal",
|
281 |
-
"Youthful": "like how teenagers might chat, energetic and lively"
|
282 |
-
}
|
283 |
-
chosen_tone = tone_description.get(tone, "casual")
|
284 |
-
|
285 |
-
# Construct prompt
|
286 |
-
prompt = (
|
287 |
-
f"{system_prompt}\n"
|
288 |
-
f"TONE: {chosen_tone}\n"
|
289 |
-
f"TARGET LENGTH: {target_length} ({min_words}-{max_words} words)\n"
|
290 |
-
f"INPUT TEXT: {input_text}\n\n"
|
291 |
-
"Please provide the output in the following JSON format without any additional text:\n\n"
|
292 |
-
"{\n"
|
293 |
-
' "dialogue": [\n'
|
294 |
-
' {\n'
|
295 |
-
' "speaker": "Jane",\n'
|
296 |
-
' "text": "..." \n'
|
297 |
-
' },\n'
|
298 |
-
' {\n'
|
299 |
-
' "speaker": "John",\n'
|
300 |
-
' "text": "..." \n'
|
301 |
-
' }\n'
|
302 |
-
" ]\n"
|
303 |
-
"}"
|
304 |
-
)
|
305 |
-
print("[LOG] Sending prompt to Groq:")
|
306 |
-
print(prompt)
|
307 |
-
|
308 |
-
try:
|
309 |
-
response = groq_client.chat.completions.create(
|
310 |
-
messages=[{"role": "system", "content": prompt}],
|
311 |
-
model="llama-3.3-70b-versatile",
|
312 |
-
max_tokens=2048,
|
313 |
-
temperature=0.7
|
314 |
-
)
|
315 |
-
except Exception as e:
|
316 |
-
print("[ERROR] Groq API error:", e)
|
317 |
-
raise ValueError(f"Error communicating with Groq API: {str(e)}")
|
318 |
-
|
319 |
-
raw_content = response.choices[0].message.content.strip()
|
320 |
-
# Attempt to parse JSON
|
321 |
-
start_index = raw_content.find('{')
|
322 |
-
end_index = raw_content.rfind('}')
|
323 |
-
if start_index == -1 or end_index == -1:
|
324 |
-
raise ValueError("Failed to parse dialogue: No JSON found.")
|
325 |
-
|
326 |
-
json_str = raw_content[start_index:end_index+1].strip()
|
327 |
-
try:
|
328 |
-
data = json.loads(json_str)
|
329 |
-
return Dialogue(**data)
|
330 |
-
except Exception as e:
|
331 |
-
print("[ERROR] JSON decoding failed:", e)
|
332 |
-
raise ValueError(f"Failed to parse dialogue: {str(e)}")
|
333 |
-
|
334 |
-
# ----------------------------------------------------------------------
|
335 |
-
# REPLACE the YTDLP-based approach with the RapidAPI approach
|
336 |
-
# ----------------------------------------------------------------------
|
337 |
-
def transcribe_youtube_video(video_url: str) -> str:
|
338 |
-
"""
|
339 |
-
Transcribe the given YouTube video by calling the RapidAPI 'youtube-transcriptor' endpoint.
|
340 |
-
1) Extract the 11-char video ID from the YouTube URL.
|
341 |
-
2) Call the RapidAPI endpoint (lang=en).
|
342 |
-
3) Parse and extract 'transcriptionAsText' from the response.
|
343 |
-
4) Return that transcript as a string.
|
344 |
-
"""
|
345 |
-
print("[LOG] Transcribing YouTube video via RapidAPI:", video_url)
|
346 |
-
# Extract video ID
|
347 |
-
video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11})", video_url)
|
348 |
-
if not video_id_match:
|
349 |
-
raise ValueError(f"Invalid YouTube URL: {video_url}, cannot extract video ID.")
|
350 |
-
|
351 |
-
video_id = video_id_match.group(1)
|
352 |
-
print("[LOG] Extracted video ID:", video_id)
|
353 |
-
|
354 |
-
base_url = "https://youtube-transcriptor.p.rapidapi.com/transcript"
|
355 |
-
params = {
|
356 |
-
"video_id": video_id,
|
357 |
-
"lang": "en"
|
358 |
-
}
|
359 |
-
headers = {
|
360 |
-
"x-rapidapi-host": "youtube-transcriptor.p.rapidapi.com",
|
361 |
-
"x-rapidapi-key": os.environ.get("RAPIDAPI_KEY")
|
362 |
-
}
|
363 |
-
|
364 |
-
try:
|
365 |
-
response = requests.get(base_url, headers=headers, params=params, timeout=30)
|
366 |
-
print("[LOG] RapidAPI Response Status Code:", response.status_code)
|
367 |
-
print("[LOG] RapidAPI Response Body:", response.text) # Log the full response
|
368 |
-
|
369 |
-
if response.status_code != 200:
|
370 |
-
raise ValueError(f"RapidAPI transcription error: {response.status_code}, {response.text}")
|
371 |
-
|
372 |
-
data = response.json()
|
373 |
-
if not isinstance(data, list) or not data:
|
374 |
-
raise ValueError(f"Unexpected transcript format or empty transcript: {data}")
|
375 |
-
|
376 |
-
# Extract 'transcriptionAsText'
|
377 |
-
transcript_as_text = data[0].get('transcriptionAsText', '').strip()
|
378 |
-
if not transcript_as_text:
|
379 |
-
raise ValueError("transcriptionAsText field is missing or empty.")
|
380 |
-
|
381 |
-
print("[LOG] Transcript retrieval successful.")
|
382 |
-
print(f"[DEBUG] Transcript Length: {len(transcript_as_text)} characters.")
|
383 |
-
|
384 |
-
# Optionally, print a snippet of the transcript
|
385 |
-
if len(transcript_as_text) > 200:
|
386 |
-
snippet = transcript_as_text[:200] + "..."
|
387 |
-
else:
|
388 |
-
snippet = transcript_as_text
|
389 |
-
print(f"[DEBUG] Transcript Snippet: {snippet}")
|
390 |
-
|
391 |
-
return transcript_as_text
|
392 |
-
|
393 |
-
except Exception as e:
|
394 |
-
print("[ERROR] RapidAPI transcription error:", e)
|
395 |
-
raise ValueError(f"Error transcribing YouTube video via RapidAPI: {str(e)}")
|
396 |
-
|
397 |
-
def generate_audio_mp3(text: str, speaker: str) -> str:
|
398 |
-
"""
|
399 |
-
Calls Deepgram TTS with the text, returning a path to a temp MP3 file.
|
400 |
-
We also do some pre-processing for punctuation, abbreviations, etc.
|
401 |
-
"""
|
402 |
-
try:
|
403 |
-
print(f"[LOG] Generating audio for speaker: {speaker}")
|
404 |
-
|
405 |
-
# Preprocess text
|
406 |
-
processed_text = _preprocess_text_for_tts(text)
|
407 |
-
|
408 |
-
# Deepgram TTS endpoint
|
409 |
-
deepgram_api_url = "https://api.deepgram.com/v1/speak"
|
410 |
-
params = {
|
411 |
-
"model": "aura-asteria-en", # default
|
412 |
-
}
|
413 |
-
if speaker == "John":
|
414 |
-
params["model"] = "aura-zeus-en"
|
415 |
-
|
416 |
-
headers = {
|
417 |
-
"Accept": "audio/mpeg",
|
418 |
-
"Content-Type": "application/json",
|
419 |
-
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
|
420 |
-
}
|
421 |
-
body = {
|
422 |
-
"text": processed_text
|
423 |
-
}
|
424 |
-
|
425 |
-
response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
|
426 |
-
if response.status_code != 200:
|
427 |
-
raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}")
|
428 |
-
|
429 |
-
content_type = response.headers.get('Content-Type', '')
|
430 |
-
if 'audio/mpeg' not in content_type:
|
431 |
-
raise ValueError("Unexpected Content-Type from Deepgram.")
|
432 |
-
|
433 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
|
434 |
-
for chunk in response.iter_content(chunk_size=8192):
|
435 |
-
if chunk:
|
436 |
-
mp3_file.write(chunk)
|
437 |
-
mp3_path = mp3_file.name
|
438 |
-
|
439 |
-
# Normalize volume
|
440 |
-
audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
|
441 |
-
audio_seg = effects.normalize(audio_seg)
|
442 |
-
|
443 |
-
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
444 |
-
audio_seg.export(final_mp3_path, format="mp3")
|
445 |
-
|
446 |
-
if os.path.exists(mp3_path):
|
447 |
-
os.remove(mp3_path)
|
448 |
-
|
449 |
-
return final_mp3_path
|
450 |
-
except Exception as e:
|
451 |
-
print("[ERROR] Error generating audio:", e)
|
452 |
-
raise ValueError(f"Error generating audio: {str(e)}")
|
453 |
-
|
454 |
-
def transcribe_youtube_video_OLD_YTDLP(video_url: str) -> str:
|
455 |
-
"""
|
456 |
-
Original ytdlp-based approach for local transcription.
|
457 |
-
No longer used, but kept for reference.
|
458 |
-
"""
|
459 |
-
pass
|
460 |
-
|
461 |
-
# ---------------------------------------------------------------------
|
462 |
-
# TEXT PRE-PROCESSING FOR NATURAL TTS (punctuation, abbreviations, etc.)
|
463 |
-
# ---------------------------------------------------------------------
|
464 |
-
def _preprocess_text_for_tts(text: str) -> str:
|
465 |
-
"""
|
466 |
-
Enhances text for natural-sounding TTS by handling abbreviations,
|
467 |
-
punctuation, and intelligent filler insertion.
|
468 |
-
"""
|
469 |
-
# 1) Hyphens -> spaces
|
470 |
-
text = re.sub(r"-", " ", text)
|
471 |
-
|
472 |
-
# 2) Convert decimals (e.g., 3.14 -> 'three point one four')
|
473 |
-
def convert_decimal(m):
|
474 |
-
number_str = m.group()
|
475 |
-
parts = number_str.split('.')
|
476 |
-
whole_part = _spell_digits(parts[0])
|
477 |
-
decimal_part = " ".join(_spell_digits(d) for d in parts[1])
|
478 |
-
return f"{whole_part} point {decimal_part}"
|
479 |
-
|
480 |
-
text = re.sub(r"\d+\.\d+", convert_decimal, text)
|
481 |
-
|
482 |
-
# 3) Abbreviations (e.g., NASA -> N A S A, MPs -> M Peas)
|
483 |
-
def expand_abbreviations(match):
|
484 |
-
abbrev = match.group()
|
485 |
-
# Check if it's a plural abbreviation
|
486 |
-
if abbrev.endswith('s') and abbrev[:-1].isupper():
|
487 |
-
singular = abbrev[:-1]
|
488 |
-
expanded = " ".join(list(singular)) + "s" # Append 's' to the expanded form
|
489 |
-
# Handle specific plural forms
|
490 |
-
specific_plural = {
|
491 |
-
"MPs": "M Peas",
|
492 |
-
"TMTs": "T M Tees",
|
493 |
-
"ARJs": "A R Jays",
|
494 |
-
# Add more as needed
|
495 |
-
}
|
496 |
-
return specific_plural.get(abbrev, expanded)
|
497 |
-
else:
|
498 |
-
return " ".join(list(abbrev))
|
499 |
-
|
500 |
-
# Regex to match abbreviations (all uppercase letters, possibly ending with 's')
|
501 |
-
text = re.sub(r"\b[A-Z]{2,}s?\b", expand_abbreviations, text)
|
502 |
-
|
503 |
-
# 4) Removed ellipsis insertion after punctuation to reduce long pauses
|
504 |
-
# These lines have been removed:
|
505 |
-
# text = re.sub(r"\.(\s|$)", r"...\1", text)
|
506 |
-
# text = re.sub(r",(\s|$)", r",...\1", text)
|
507 |
-
# text = re.sub(r"\?(\s|$)", r"?...\1", text)
|
508 |
-
|
509 |
-
# 5) Intelligent filler insertion after specific keywords
|
510 |
-
def insert_thinking_pause(m):
|
511 |
-
word = m.group(1)
|
512 |
-
# Decide randomly whether to insert a filler
|
513 |
-
if random.random() < 0.3: # 30% chance
|
514 |
-
filler = random.choice(['hmm,', 'well,', 'let me see,'])
|
515 |
-
return f"{word}..., {filler}"
|
516 |
-
else:
|
517 |
-
return f"{word}...,"
|
518 |
-
|
519 |
-
keywords_pattern = r"\b(important|significant|crucial|point|topic)\b"
|
520 |
-
text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)
|
521 |
-
|
522 |
-
# 6) Insert dynamic pauses within sentences (e.g., after conjunctions)
|
523 |
-
# This adds natural pauses without overusing fillers
|
524 |
-
conjunctions_pattern = r"\b(and|but|so|because|however)\b"
|
525 |
-
text = re.sub(conjunctions_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE)
|
526 |
-
|
527 |
-
# 7) Remove any unintended random fillers (safeguard)
|
528 |
-
text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE)
|
529 |
-
|
530 |
-
# 8) Ensure normal grammar and speaking style
|
531 |
-
def capitalize_match(match):
|
532 |
-
return match.group().upper()
|
533 |
-
|
534 |
-
text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_match, text)
|
535 |
-
|
536 |
-
return text.strip()
|
537 |
-
|
538 |
-
def _spell_digits(d: str) -> str:
|
539 |
-
"""
|
540 |
-
Convert digits '3' -> 'three', etc.
|
541 |
-
"""
|
542 |
-
digit_map = {
|
543 |
-
'0': 'zero',
|
544 |
-
'1': 'one',
|
545 |
-
'2': 'two',
|
546 |
-
'3': 'three',
|
547 |
-
'4': 'four',
|
548 |
-
'5': 'five',
|
549 |
-
'6': 'six',
|
550 |
-
'7': 'seven',
|
551 |
-
'8': 'eight',
|
552 |
-
'9': 'nine'
|
553 |
-
}
|
554 |
-
return " ".join(digit_map[ch] for ch in d if ch in digit_map)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|