Spaces:
Running
Running
Create qa.py
Browse files
qa.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# qa.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
import tempfile
|
6 |
+
import json
|
7 |
+
import streamlit as st
|
8 |
+
|
9 |
+
from utils import generate_audio_mp3 # We'll reuse your existing TTS function
|
10 |
+
|
11 |
+
def transcribe_audio_deepgram(local_audio_path: str) -> str:
|
12 |
+
"""
|
13 |
+
Sends a local audio file to Deepgram for STT.
|
14 |
+
Returns the transcript text if successful, or raises an error if failed.
|
15 |
+
"""
|
16 |
+
DEEPGRAM_API_KEY = os.environ.get("DEEPGRAM_API_KEY")
|
17 |
+
if not DEEPGRAM_API_KEY:
|
18 |
+
raise ValueError("Deepgram API key not found in environment variables.")
|
19 |
+
|
20 |
+
url = "https://api.deepgram.com/v1/listen?model=nova-2&smart_format=true"
|
21 |
+
# For WAV, set Content-Type to audio/wav. For MP3, use audio/mpeg, etc.
|
22 |
+
headers = {
|
23 |
+
"Authorization": f"Token {DEEPGRAM_API_KEY}",
|
24 |
+
"Content-Type": "audio/wav",
|
25 |
+
}
|
26 |
+
with open(local_audio_path, "rb") as f:
|
27 |
+
response = requests.post(url, headers=headers, data=f)
|
28 |
+
response.raise_for_status()
|
29 |
+
|
30 |
+
data = response.json()
|
31 |
+
# Extract the transcript
|
32 |
+
transcript = data["results"]["channels"][0]["alternatives"][0].get("transcript", "")
|
33 |
+
return transcript
|
34 |
+
|
35 |
+
def call_llm_for_qa(conversation_so_far: str, user_question: str) -> dict:
|
36 |
+
"""
|
37 |
+
Minimal function that calls your LLM (Groq) to answer a follow-up question.
|
38 |
+
Returns a Python dict, e.g.: {"speaker": "John", "text": "..."}
|
39 |
+
"""
|
40 |
+
# Example system prompt:
|
41 |
+
system_prompt = f"""
|
42 |
+
You are John, the guest on this podcast. The user is asking a follow-up question.
|
43 |
+
Conversation so far:
|
44 |
+
{conversation_so_far}
|
45 |
+
|
46 |
+
New user question:
|
47 |
+
{user_question}
|
48 |
+
|
49 |
+
Please respond in JSON with keys "speaker" and "text", e.g.:
|
50 |
+
{{ "speaker": "John", "text": "Sure, here's my answer..." }}
|
51 |
+
"""
|
52 |
+
|
53 |
+
# Here, you'd do something like your existing generate_script or direct Groq call
|
54 |
+
# For demonstration, let's do a placeholder
|
55 |
+
# This should be replaced by your real LLM call, e.g., call_groq_api(system_prompt)
|
56 |
+
# and parse out the JSON response.
|
57 |
+
|
58 |
+
# Example pseudo-code:
|
59 |
+
from utils import call_groq_api_for_qa # Suppose you define this in utils
|
60 |
+
|
61 |
+
raw_json_response = call_groq_api_for_qa(system_prompt)
|
62 |
+
# Expect something like: {"speaker": "John", "text": "Here's an answer."}
|
63 |
+
response_dict = json.loads(raw_json_response)
|
64 |
+
return response_dict
|
65 |
+
|
66 |
+
def handle_qa_exchange(user_question: str) -> (bytes, str):
|
67 |
+
"""
|
68 |
+
1) Read conversation_so_far from session_state
|
69 |
+
2) Call the LLM for a short follow-up answer
|
70 |
+
3) Generate TTS audio
|
71 |
+
4) Return (audio_bytes, answer_text)
|
72 |
+
"""
|
73 |
+
conversation_so_far = st.session_state.get("conversation_history", "")
|
74 |
+
|
75 |
+
# Ask LLM
|
76 |
+
response_dict = call_llm_for_qa(conversation_so_far, user_question)
|
77 |
+
answer_text = response_dict.get("text", "")
|
78 |
+
speaker = response_dict.get("speaker", "John")
|
79 |
+
|
80 |
+
# Update conversation
|
81 |
+
# We store: "User: question" and "John: answer"
|
82 |
+
new_history = conversation_so_far + f"\nUser: {user_question}\n{speaker}: {answer_text}\n"
|
83 |
+
st.session_state["conversation_history"] = new_history
|
84 |
+
|
85 |
+
if not answer_text.strip():
|
86 |
+
return (None, "")
|
87 |
+
|
88 |
+
# TTS
|
89 |
+
audio_file_path = generate_audio_mp3(answer_text, "John") # using John voice
|
90 |
+
with open(audio_file_path, "rb") as f:
|
91 |
+
audio_bytes = f.read()
|
92 |
+
|
93 |
+
return (audio_bytes, answer_text)
|