File size: 20,078 Bytes
337f622
 
 
 
 
 
 
 
 
e4e7996
337f622
 
 
 
 
 
 
b87cdd6
cf2b563
117149e
337f622
 
 
d4f0b3c
15d59d2
 
 
412c08d
d4f0b3c
117149e
cf2b563
 
337f622
 
cf2b563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337f622
b87cdd6
337f622
 
d4f0b3c
337f622
cf2b563
 
337f622
 
cf2b563
337f622
 
 
 
 
 
 
 
 
b87cdd6
337f622
 
 
 
 
 
 
 
 
 
 
b87cdd6
 
 
 
 
 
 
 
 
 
 
 
 
412c08d
b87cdd6
 
337f622
 
117149e
337f622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d59d2
b87cdd6
 
 
 
117149e
 
 
b87cdd6
 
 
 
 
 
412c08d
b87cdd6
 
f7176ee
d4f0b3c
b87cdd6
 
 
 
 
337f622
cf2b563
 
 
 
 
 
117149e
412c08d
cf2b563
337f622
 
 
 
 
412c08d
337f622
 
 
 
 
 
cf2b563
337f622
 
 
 
 
 
 
 
 
b87cdd6
337f622
d4f0b3c
337f622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e7996
 
 
 
337f622
e4e7996
 
 
 
 
337f622
 
 
e4e7996
 
337f622
 
b4f26dc
337f622
e4e7996
 
117149e
337f622
 
e4e7996
 
337f622
 
 
 
 
 
 
 
 
 
 
b87cdd6
 
 
117149e
b87cdd6
 
 
 
 
 
 
 
117149e
 
412c08d
117149e
 
b87cdd6
 
 
 
 
 
337f622
 
 
 
 
 
b87cdd6
d4f0b3c
b4f26dc
412c08d
 
 
 
337f622
 
 
 
 
 
 
117149e
337f622
 
 
 
 
 
117149e
337f622
 
 
117149e
337f622
 
 
117149e
337f622
 
 
117149e
337f622
 
 
 
b87cdd6
 
 
 
 
 
 
 
 
 
 
 
117149e
b87cdd6
337f622
 
 
 
 
 
 
 
 
 
 
 
 
 
b87cdd6
412c08d
 
337f622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f0b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
337f622
117149e
337f622
 
 
 
117149e
337f622
 
 
 
 
 
 
 
 
 
 
 
 
117149e
 
 
 
 
b87cdd6
337f622
 
 
 
 
 
 
 
 
 
 
 
 
 
b87cdd6
337f622
 
 
 
 
 
 
 
 
 
 
d4f0b3c
 
 
412c08d
 
 
 
 
f7176ee
d4f0b3c
47b4251
15d59d2
 
 
 
 
 
 
 
 
d4f0b3c
 
 
 
15d59d2
d4f0b3c
 
 
 
 
 
 
47b4251
d4f0b3c
 
 
15d59d2
 
 
47b4251
d4f0b3c
412c08d
 
 
 
 
d4f0b3c
 
 
412c08d
d4f0b3c
 
 
412c08d
d4f0b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412c08d
 
 
117149e
337f622
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# app.py

import streamlit as st
import time
import re
import os
import tempfile
import pypdf
from pydub import AudioSegment, effects
import difflib

from utils import (
    generate_script,
    generate_audio_mp3,
    truncate_text,
    extract_text_from_url,
    transcribe_youtube_video,
    research_topic,
    mix_with_bg_music,
    DialogueItem
)
from prompts import SYSTEM_PROMPT

# The new Q&A with mic
from qa import AudioBufferProcessor, handle_qa_exchange, transcribe_audio_deepgram

from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration

MAX_QA_QUESTIONS = 5

def parse_user_edited_transcript(edited_text: str, host_name: str, guest_name: str):
    pattern = r"\*\*(.+?)\*\*:\s*(.+)"
    matches = re.findall(pattern, edited_text)

    items = []
    if not matches:
        raw_name = host_name or "Jane"
        text_line = edited_text.strip()
        speaker = "Jane"
        if raw_name.lower() == guest_name.lower():
            speaker = "John"
        item = DialogueItem(
            speaker=speaker,
            display_speaker=raw_name,
            text=text_line
        )
        items.append(item)
        return items

    for (raw_name, text_line) in matches:
        if raw_name.lower() == host_name.lower():
            speaker = "Jane"
        elif raw_name.lower() == guest_name.lower():
            speaker = "John"
        else:
            speaker = "Jane"
        item = DialogueItem(
            speaker=speaker,
            display_speaker=raw_name,
            text=text_line
        )
        items.append(item)
    return items

def regenerate_audio_from_dialogue(dialogue_items, custom_bg_music_path=None):
    audio_segments = []
    transcript = ""
    crossfade_duration = 50

    for item in dialogue_items:
        audio_file = generate_audio_mp3(item.text, item.speaker)
        seg = AudioSegment.from_file(audio_file, format="mp3")
        audio_segments.append(seg)
        transcript += f"**{item.display_speaker}**: {item.text}\n\n"
        os.remove(audio_file)

    if not audio_segments:
        return None, "No audio segments were generated."

    combined_spoken = audio_segments[0]
    for seg in audio_segments[1:]:
        combined_spoken = combined_spoken.append(seg, crossfade=crossfade_duration)

    final_mix = mix_with_bg_music(combined_spoken, custom_bg_music_path)

    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
        final_mix.export(temp_audio.name, format="mp3")
        final_mp3_path = temp_audio.name

    with open(final_mp3_path, "rb") as f:
        audio_bytes = f.read()
    os.remove(final_mp3_path)

    return audio_bytes, transcript

def generate_podcast(
    file,
    url,
    video_url,
    research_topic_input,
    tone,
    length_minutes,
    host_name,
    host_desc,
    guest_name,
    guest_desc,
    user_specs,
    sponsor_content,
    sponsor_style,
    custom_bg_music_path
):
    sources = [bool(file), bool(url), bool(video_url), bool(research_topic_input)]
    if sum(sources) > 1:
        return None, "Provide only one input (PDF, URL, YouTube, or Topic)."
    if not any(sources):
        return None, "Please provide at least one source."

    text = ""
    if file:
        try:
            if not file.name.lower().endswith('.pdf'):
                return None, "Please upload a PDF file."
            reader = pypdf.PdfReader(file)
            text = " ".join(page.extract_text() for page in reader.pages if page.extract_text())
        except Exception as e:
            return None, f"Error reading PDF: {str(e)}"
    elif url:
        try:
            text = extract_text_from_url(url)
            if not text:
                return None, "Failed to extract text from URL."
        except Exception as e:
            return None, f"Error extracting text from URL: {str(e)}"
    elif video_url:
        try:
            text = transcribe_youtube_video(video_url)
            if not text:
                return None, "Failed to transcribe YouTube video."
        except Exception as e:
            return None, f"Error transcribing YouTube video: {str(e)}"
    elif research_topic_input:
        try:
            text = research_topic(research_topic_input)
            if not text:
                return None, f"Sorry, no information found on '{research_topic_input}'."
        except Exception as e:
            return None, f"Error researching topic: {str(e)}"

    from utils import truncate_text
    text = truncate_text(text)

    extra_instructions = []
    if host_name or guest_name:
        host_line = f"Host: {host_name or 'Jane'} - {host_desc or 'a curious host'}."
        guest_line = f"Guest: {guest_name or 'John'} - {guest_desc or 'an expert'}."
        extra_instructions.append(f"{host_line}\n{guest_line}")

    if user_specs.strip():
        extra_instructions.append(f"Additional User Instructions: {user_specs}")

    if sponsor_content.strip():
        extra_instructions.append(
            f"Sponsor Content Provided (should be under ~30 seconds):\n{sponsor_content}"
        )

    from prompts import SYSTEM_PROMPT
    from utils import generate_script, generate_audio_mp3, mix_with_bg_music
    combined_instructions = "\n\n".join(extra_instructions).strip()
    full_prompt = SYSTEM_PROMPT
    if combined_instructions:
        full_prompt += f"\n\n# Additional Instructions\n{combined_instructions}\n"

    try:
        script = generate_script(
            full_prompt,
            text,
            tone,
            f"{length_minutes} Mins",
            host_name=host_name or "Jane",
            guest_name=guest_name or "John",
            sponsor_style=sponsor_style
        )
    except Exception as e:
        return None, f"Error generating script: {str(e)}"

    audio_segments = []
    transcript = ""
    crossfade_duration = 50

    try:
        for item in script.dialogue:
            audio_file = generate_audio_mp3(item.text, item.speaker)
            seg = AudioSegment.from_file(audio_file, format="mp3")
            audio_segments.append(seg)
            transcript += f"**{item.display_speaker}**: {item.text}\n\n"
            os.remove(audio_file)

        if not audio_segments:
            return None, "No audio segments generated."

        combined_spoken = audio_segments[0]
        for seg in audio_segments[1:]:
            combined_spoken = combined_spoken.append(seg, crossfade=crossfade_duration)

        final_mix = mix_with_bg_music(combined_spoken, custom_bg_music_path)

        import tempfile
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
            final_mix.export(temp_audio.name, format="mp3")
            final_mp3_path = temp_audio.name

        with open(final_mp3_path, "rb") as f:
            audio_bytes = f.read()
        os.remove(final_mp3_path)

        return audio_bytes, transcript
    except Exception as e:
        return None, f"Error generating audio: {str(e)}"

def highlight_differences(original: str, edited: str) -> str:
    matcher = difflib.SequenceMatcher(None, original.split(), edited.split())
    highlighted = []
    for opcode, i1, i2, j1, j2 in matcher.get_opcodes():
        if opcode == 'equal':
            highlighted.extend(original.split()[i1:i2])
        elif opcode in ('replace', 'insert'):
            added_words = edited.split()[j1:j2]
            highlighted.extend([f'<span style="color:red">{word}</span>' for word in added_words])
        elif opcode == 'delete':
            pass
    return ' '.join(highlighted)

def main():
    st.set_page_config(
        page_title="MyPod - AI-based Podcast Generator",
        layout="centered"
    )

    logo_col, title_col = st.columns([1, 10])
    with logo_col:
        st.image("logomypod.jpg", width=60)
    with title_col:
        st.markdown("## MyPod - AI powered Podcast Generator")

    st.markdown(
        "Welcome to **MyPod**, your go-to AI-powered podcast generator! πŸŽ‰\n\n"
        "MyPod transforms your documents, webpages, YouTube videos, or research topics into a more human-sounding, "
        "conversational podcast.\n"
        "Select a tone and a duration range. The script will be on-topic, concise, and respect your chosen length.\n\n"
        "### How to use:\n"
        "1. **Provide one source:** PDF Files, Website URL, YouTube videos, or a Topic to Research.\n"
        "2. **Choose the tone and the target duration.**\n"
        "3. **Click 'Generate Podcast'** to produce your podcast. After the audio is generated, "
        "   you can edit the transcript and re-generate the audio with your edits if needed.\n\n"
        "**Research a Topic:** If it's too niche or specific, you might not get the desired outcome.\n\n"
        "**Token Limit:** Up to ~2,048 tokens are supported. Long inputs may be truncated.\n"
        "**Note:** YouTube videos will only work if they have captions built in.\n\n"
        "⏳**Please be patient while your podcast is being generated.** This process involves content analysis, "
        "script creation, and high-quality audio synthesis, which may take a few minutes.\n\n"
        "πŸ”₯ **Ready to create your personalized podcast?** Give it a try now and let the magic happen! πŸ”₯"
    )

    col1, col2 = st.columns(2)
    with col1:
        file = st.file_uploader("Upload File (.pdf only)", type=["pdf"])
        url = st.text_input("Or Enter Website URL")
        video_url = st.text_input("Or Enter YouTube Link (Captioned videos)")
    with col2:
        research_topic_input = st.text_input("Or Research a Topic")
        tone = st.radio("Tone", ["Humorous", "Formal", "Casual", "Youthful"], index=2)
        length_minutes = st.slider("Podcast Length (in minutes)", 1, 60, 3)

    st.markdown("### Customize Your Podcast (New Features)")

    with st.expander("Set Host & Guest Names/Descriptions (Optional)"):
        host_name = st.text_input("Host Name (leave blank for 'Jane')")
        host_desc = st.text_input("Host Description (Optional)")
        guest_name = st.text_input("Guest Name (leave blank for 'John')")
        guest_desc = st.text_input("Guest Description (Optional)")

    user_specs = st.text_area("Any special instructions or prompts for the script? (Optional)", "")
    sponsor_content = st.text_area("Sponsored Content / Ad (Optional)", "")
    sponsor_style = st.selectbox(
        "Sponsor Integration Style",
        ["Separate Break", "Blended"]
    )

    custom_bg_music_file = st.file_uploader("Upload Custom Background Music (Optional)", type=["mp3", "wav"])
    custom_bg_music_path = None
    if custom_bg_music_file:
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(custom_bg_music_file.name)[1]) as tmp:
            tmp.write(custom_bg_music_file.read())
            custom_bg_music_path = tmp.name

    if "audio_bytes" not in st.session_state:
        st.session_state["audio_bytes"] = None
    if "transcript" not in st.session_state:
        st.session_state["transcript"] = None
    if "transcript_original" not in st.session_state:
        st.session_state["transcript_original"] = None

    # For Q&A
    if "qa_count" not in st.session_state:
        st.session_state["qa_count"] = 0
    if "conversation_history" not in st.session_state:
        st.session_state["conversation_history"] = ""

    generate_button = st.button("Generate Podcast")

    if generate_button:
        progress_bar = st.progress(0)
        progress_text = st.empty()

        progress_messages = [
            "πŸ” Analyzing your input...",
            "πŸ“ Crafting the perfect script...",
            "πŸŽ™οΈ Generating high-quality audio...",
            "🎢 Adding the finishing touches..."
        ]

        progress_text.write(progress_messages[0])
        progress_bar.progress(0)
        time.sleep(1.0)

        progress_text.write(progress_messages[1])
        progress_bar.progress(25)
        time.sleep(1.0)

        progress_text.write(progress_messages[2])
        progress_bar.progress(50)
        time.sleep(1.0)

        progress_text.write(progress_messages[3])
        progress_bar.progress(75)
        time.sleep(1.0)

        audio_bytes, transcript = generate_podcast(
            file,
            url,
            video_url,
            research_topic_input,
            tone,
            length_minutes,
            host_name,
            host_desc,
            guest_name,
            guest_desc,
            user_specs,
            sponsor_content,
            sponsor_style,
            custom_bg_music_path
        )

        progress_bar.progress(100)
        progress_text.write("βœ… Done!")

        if audio_bytes is None:
            st.error(transcript)
            st.session_state["audio_bytes"] = None
            st.session_state["transcript"] = None
            st.session_state["transcript_original"] = None
        else:
            st.success("Podcast generated successfully!")
            st.session_state["audio_bytes"] = audio_bytes
            st.session_state["transcript"] = transcript
            st.session_state["transcript_original"] = transcript
            st.session_state["qa_count"] = 0
            st.session_state["conversation_history"] = ""

    if st.session_state["audio_bytes"]:
        st.audio(st.session_state["audio_bytes"], format='audio/mp3')
        st.download_button(
            label="Download Podcast (MP3)",
            data=st.session_state["audio_bytes"],
            file_name="my_podcast.mp3",
            mime="audio/mpeg"
        )

        st.markdown("### Generated Transcript (Editable)")
        edited_text = st.text_area(
            "Feel free to tweak lines, fix errors, or reword anything.",
            value=st.session_state["transcript"],
            height=300
        )

        from difflib import SequenceMatcher
        def highlight_differences(original: str, edited: str) -> str:
            matcher = SequenceMatcher(None, original.split(), edited.split())
            highlighted = []
            for opcode, i1, i2, j1, j2 in matcher.get_opcodes():
                if opcode == 'equal':
                    highlighted.extend(original.split()[i1:i2])
                elif opcode in ('replace', 'insert'):
                    added_words = edited.split()[j1:j2]
                    highlighted.extend([f'<span style="color:red">{word}</span>' for word in added_words])
                elif opcode == 'delete':
                    pass
            return ' '.join(highlighted)

        if st.session_state["transcript_original"]:
            highlighted_transcript = highlight_differences(
                st.session_state["transcript_original"],
                edited_text
            )
            st.markdown("### **Edited Transcript Highlights**", unsafe_allow_html=True)
            st.markdown(highlighted_transcript, unsafe_allow_html=True)

        if st.button("Regenerate Audio From Edited Text"):
            regen_bar = st.progress(0)
            regen_text = st.empty()

            regen_text.write("πŸ”„ Regenerating your podcast with the edits...")
            regen_bar.progress(25)
            time.sleep(1.0)

            regen_text.write("πŸ”§ Adjusting the script based on your changes...")
            regen_bar.progress(50)
            time.sleep(1.0)

            dialogue_items = parse_user_edited_transcript(
                edited_text,
                host_name or "Jane",
                guest_name or "John"
            )
            new_audio_bytes, new_transcript = regenerate_audio_from_dialogue(dialogue_items, custom_bg_music_path)

            regen_bar.progress(75)
            time.sleep(1.0)

            if new_audio_bytes is None:
                regen_bar.progress(100)
                st.error(new_transcript)
            else:
                regen_bar.progress(100)
                regen_text.write("βœ… Regeneration complete!")
                st.success("Regenerated audio below:")

                st.session_state["audio_bytes"] = new_audio_bytes
                st.session_state["transcript"] = new_transcript
                st.session_state["transcript_original"] = new_transcript

                st.audio(new_audio_bytes, format='audio/mp3')
                st.download_button(
                    label="Download Edited Podcast (MP3)",
                    data=new_audio_bytes,
                    file_name="my_podcast_edited.mp3",
                    mime="audio/mpeg"
                )
                st.markdown("### Updated Transcript")
                st.markdown(new_transcript)

        # ----------- POST-PODCAST Q&A with Microphone -----------
        st.markdown("## Post-Podcast Q&A (Using Microphone)")

        used_questions = st.session_state["qa_count"]
        remaining = MAX_QA_QUESTIONS - used_questions

        if remaining > 0:
            st.write(f"You can ask up to {remaining} more question(s).")

            st.write("### Record Your Follow-Up Question:")

            # EXPLICIT STUN SERVER
            # So we can confirm ICE candidates are gathered
            new_rtc_config = RTCConfiguration(
                {
                    "iceServers": [
                        {"urls": ["stun:stun.l.google.com:19302"]}
                    ]
                }
            )

            webrtc_ctx = webrtc_streamer(
                key="qna-audio-stream",
                mode=WebRtcMode.SENDONLY,
                rtc_configuration=new_rtc_config,  # <--- STUN server explicitly set
                media_stream_constraints={"audio": True, "video": False},
                audio_processor_factory=AudioBufferProcessor
            )

            if "audio-processor" not in st.session_state:
                st.session_state["audio-processor"] = None

            # If the stream is currently playing, store the processor
            if webrtc_ctx.state.playing and webrtc_ctx.audio_processor:
                st.session_state["audio-processor"] = webrtc_ctx.audio_processor

                # Debug print: how many frames have arrived?
                st.write("Frames so far:", webrtc_ctx.audio_processor.frame_count)

            if not webrtc_ctx.state.playing:
                st.write("Recording Stopped. You may now submit your question.")

            if st.button("Submit Q&A"):
                if used_questions >= MAX_QA_QUESTIONS:
                    st.warning("You have reached the Q&A limit.")
                else:
                    processor = st.session_state.get("audio-processor")
                    if not processor or not getattr(processor, "frames", None):
                        st.warning("No recorded audio found. Please record your question first.")
                    else:
                        local_wav_path = processor.finalize_wav()
                        if not local_wav_path:
                            st.warning("No audio frames found. Please record again.")
                        else:
                            st.write("Transcribing your voice question via Deepgram...")
                            question_text = transcribe_audio_deepgram(local_wav_path)
                            if not question_text.strip():
                                st.warning("No transcript found. Please try again.")
                            else:
                                st.write(f"**You asked**: {question_text}")

                                conversation_so_far = st.session_state["conversation_history"]
                                ans_audio, ans_text = handle_qa_exchange(conversation_so_far, question_text)
                                if ans_audio:
                                    st.audio(ans_audio, format="audio/mp3")
                                    st.markdown(f"**John**: {ans_text}")
                                    st.session_state["qa_count"] += 1
                                else:
                                    st.warning("No response could be generated.")
        else:
            st.write("You have used all 5 Q&A opportunities.")


if __name__ == "__main__":
    main()