sidd1311 commited on
Commit
85027aa
·
verified ·
1 Parent(s): 56f3edd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +183 -0
app.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ import spaces
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+ import os
6
+ import re
7
+ from polyglot.detect import Detector
8
+
9
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
+ MODEL = "LLaMAX/LLaMAX3-8B-Alpaca"
11
+ RELATIVE_MODEL="LLaMAX/LLaMAX3-8B"
12
+
13
+ TITLE = "<h1><center>LLaMAX3-Translator</center></h1>"
14
+
15
+
16
+ model = AutoModelForCausalLM.from_pretrained(
17
+ MODEL,
18
+ torch_dtype=torch.float16,
19
+ device_map="auto")
20
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
21
+
22
+
23
+ def lang_detector(text):
24
+ min_chars = 5
25
+ if len(text) < min_chars:
26
+ return "Input text too short"
27
+ try:
28
+ detector = Detector(text).language
29
+ lang_info = str(detector)
30
+ code = re.search(r"name: (\w+)", lang_info).group(1)
31
+ return code
32
+ except Exception as e:
33
+ return f"ERROR:{str(e)}"
34
+
35
+ def Prompt_template(inst, prompt, query, src_language, trg_language):
36
+ inst = inst.format(src_language=src_language, trg_language=trg_language)
37
+ instruction = f"`{inst}`"
38
+ prompt = (
39
+ f'{prompt}'
40
+ f'### Instruction:\n{instruction}\n'
41
+ f'### Input:\n{query}\n### Response:'
42
+ )
43
+ return prompt
44
+
45
+ # Unfinished
46
+ def chunk_text():
47
+ pass
48
+
49
+ @spaces.GPU(duration=60)
50
+ def translate(
51
+ source_text: str,
52
+ source_lang: str,
53
+ target_lang: str,
54
+ inst: str,
55
+ prompt: str,
56
+ max_length: int,
57
+ temperature: float,
58
+ top_p: float,
59
+ rp: float):
60
+
61
+ print(f'Text is - {source_text}')
62
+
63
+ prompt = Prompt_template(inst, prompt, source_text, source_lang, target_lang)
64
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
65
+
66
+ generate_kwargs = dict(
67
+ input_ids=input_ids,
68
+ max_length=max_length,
69
+ do_sample=True,
70
+ temperature=temperature,
71
+ top_p=top_p,
72
+ repetition_penalty=rp,
73
+ )
74
+
75
+ outputs = model.generate(**generate_kwargs)
76
+
77
+ resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
78
+
79
+ yield resp[len(prompt):]
80
+
81
+ CSS = """
82
+ h1 {
83
+ text-align: center;
84
+ display: block;
85
+ height: 10vh;
86
+ align-content: center;
87
+ }
88
+ footer {
89
+ visibility: hidden;
90
+ }
91
+ """
92
+
93
+ LICENSE = """
94
+ Model: <a href="https://huggingface.co/LLaMAX/LLaMAX3-8B-Alpaca">LLaMAX3-8B-Alpaca</a>
95
+ """
96
+
97
+ LANG_LIST = [
98
+ 'Assamese', 'Bengali', 'Gujarati', 'Hindi', 'Kannada', 'Kashmiri', 'Konkani',
99
+ 'Malayalam', 'Manipuri', 'Marathi', 'Nepali', 'Oriya', 'Punjabi',
100
+ 'Sanskrit', 'Sindhi', 'Tamil', 'Telugu', 'Urdu', 'English'
101
+ ]
102
+
103
+
104
+ chatbot = gr.Chatbot(height=600)
105
+
106
+ with gr.Blocks(theme="soft", css=CSS) as demo:
107
+ gr.Markdown(TITLE)
108
+ with gr.Row():
109
+ with gr.Column(scale=1):
110
+ source_lang = gr.Textbox(
111
+ label="Source Lang(Auto-Detect)",
112
+ value="English",
113
+ )
114
+ target_lang = gr.Dropdown(
115
+ label="Target Lang",
116
+ value="Spanish",
117
+ choices=LANG_LIST,
118
+ )
119
+ max_length = gr.Slider(
120
+ label="Max Length",
121
+ minimum=512,
122
+ maximum=8192,
123
+ value=4096,
124
+ step=8,
125
+ )
126
+ temperature = gr.Slider(
127
+ label="Temperature",
128
+ minimum=0,
129
+ maximum=1,
130
+ value=0.3,
131
+ step=0.1,
132
+ )
133
+ top_p = gr.Slider(
134
+ minimum=0.0,
135
+ maximum=1.0,
136
+ step=0.1,
137
+ value=1.0,
138
+ label="top_p",
139
+ )
140
+ rp = gr.Slider(
141
+ minimum=0.0,
142
+ maximum=2.0,
143
+ step=0.1,
144
+ value=1.2,
145
+ label="Repetition penalty",
146
+ )
147
+ with gr.Accordion("Advanced Options", open=False):
148
+ inst = gr.Textbox(
149
+ label="Instruction",
150
+ value="Translate the following sentences from {src_language} to {trg_language}.",
151
+ lines=3,
152
+ )
153
+ prompt = gr.Textbox(
154
+ label="Prompt",
155
+ value=""" 'Below is an instruction that describes a task, paired with an input that provides further context. '
156
+ 'Write a response that appropriately completes the request.\n' """,
157
+ lines=8,
158
+ )
159
+
160
+ with gr.Column(scale=4):
161
+ source_text = gr.Textbox(
162
+ label="Source Text",
163
+ value="LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. "+\
164
+ "LLaMAX supports translation between more than 100 languages, "+\
165
+ "surpassing the performance of similarly scaled LLMs.",
166
+ lines=10,
167
+ )
168
+ output_text = gr.Textbox(
169
+ label="Output Text",
170
+ lines=10,
171
+ show_copy_button=True,
172
+ )
173
+ with gr.Row():
174
+ submit = gr.Button(value="Submit")
175
+ clear = gr.ClearButton([source_text, output_text])
176
+ gr.Markdown(LICENSE)
177
+
178
+ source_text.change(lang_detector, source_text, source_lang)
179
+ submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text])
180
+
181
+
182
+ if __name__ == "__main__":
183
+ demo.launch()