shwetashweta05 commited on
Commit
a232f82
·
verified ·
1 Parent(s): 1fe1e05

Update pages/4.Life Cycle of ML.py

Browse files
Files changed (1) hide show
  1. pages/4.Life Cycle of ML.py +10 -10
pages/4.Life Cycle of ML.py CHANGED
@@ -5,7 +5,7 @@ import pandas as pd
5
  st.header(":red[**Life Cycle Of Machine Learning Project**]")
6
  st.write(":blue[Click the button below to explore detailed steps involved in an ML project:]")
7
  if st.button("**Problem Statement**"):
8
- st.switch_page("pages/Problem Statement.py")
9
  st.write("""
10
  **A problem statement in machine learning defines the specific issue you want to solve using data and machine learning techniques. It should clearly explain:**
11
  - What the problem is
@@ -23,7 +23,7 @@ if st.button("**Problem Statement**"):
23
  """)
24
 
25
  if st.button("**Data Collection**"):
26
- st.switch_page("pages/Data Collection.py")
27
  st.write("""
28
  **Collecting data is the first and most important step in any machine learning project. This is where you gather the information needed to train your machine learning model.**
29
 
@@ -46,7 +46,7 @@ if st.button("**Data Collection**"):
46
  """)
47
 
48
  if st.button("**Simple EDA**"):
49
- st.switch_page("pages/Simple EDA.py")
50
  st.write("""
51
  **EDA (Exploratory Data Analysis) is the process of exploring your data to understand its structure, patterns, and insights before building a machine learning model.Think of it as getting to know your data better!**
52
 
@@ -78,7 +78,7 @@ if st.button("**Simple EDA**"):
78
  """)
79
 
80
  if st.button("**Data Pre-processing**"):
81
- st.switch_page("pages/Data Pre-processing.py")
82
  st.write("**Data preprocessing is the process of cleaning and preparing raw data so it can be used by a machine learning model. It ensures that the data is in the right format, free from errors, and ready for analysis.**")
83
  st.write("""
84
  **Why is Data Preprocessing Important?**
@@ -119,7 +119,7 @@ if st.button("**Data Pre-processing**"):
119
  """)
120
 
121
  if st.button("**Exploratory Data Analysis (EDA)**"):
122
- st.switch_page("pages/Exploratory Data Analysis (EDA).py")
123
  st.write("**EDA in Machine Learning (Easy Language)EDA (Exploratory Data Analysis) is like getting to know your dataset before using it in a machine learning model. It helps you understand the data's structure, patterns, and relationships to decide how to process and use it effectively.**")
124
  st.write("""
125
  Why is EDA Important?
@@ -153,7 +153,7 @@ if st.button("**Exploratory Data Analysis (EDA)**"):
153
  """)
154
 
155
  if st.button("**Feature Engineering**"):
156
- st.switch_page("pages/Feature Engineering.py")
157
  st.write("**Feature engineering is the process of creating, modifying, or selecting features (columns) in your dataset to make machine learning models work better. Features are the input data that the model uses to learn and make predictions.**")
158
  st.write("""
159
  Why is Feature Engineering Important?
@@ -190,7 +190,7 @@ if st.button("**Feature Engineering**"):
190
  """)
191
 
192
  if st.button("**Training**"):
193
- st.switch_page("pages/Training.py")
194
  st.write("**Training a machine learning model is the process of teaching the model to make predictions by learning patterns in the data. This is done by showing the model examples (training data) and adjusting it so it performs well.**")
195
  st.write("""
196
  **Steps in Training a Model:**
@@ -219,7 +219,7 @@ if st.button("**Training**"):
219
  """)
220
 
221
  if st.button("**Testing**"):
222
- st.switch_page("pages/Testing.py")
223
  st.write("**Testing a machine learning model is the process of checking how well the model works on new, unseen data. This step helps you understand if the model can make accurate predictions or decisions when applied to real-world scenarios.**")
224
  st.write("""
225
  **Why Testing is Important?**
@@ -250,7 +250,7 @@ if st.button("**Testing**"):
250
  """)
251
 
252
  if st.button("**Deployment**"):
253
- st.switch_page("pages/Deployment.py")
254
  st.write("**Deployment is the process of making a trained machine learning model available for real-world use. It allows people or systems to use the model to make predictions or decisions on new data.**")
255
  st.write("""
256
  **Why Deployment is Important:**
@@ -283,7 +283,7 @@ if st.button("**Deployment**"):
283
  """)
284
 
285
  if st.button("**Monitoring**"):
286
- st.switch_page("pages/Monitoring.py")
287
  st.write("**Monitoring a machine learning model means keeping track of how well it performs after it has been deployed. It helps you make sure the model continues to give accurate predictions when used in the real world.**")
288
  st.write("""
289
  **Why Monitoring is Important:**
 
5
  st.header(":red[**Life Cycle Of Machine Learning Project**]")
6
  st.write(":blue[Click the button below to explore detailed steps involved in an ML project:]")
7
  if st.button("**Problem Statement**"):
8
+ st.switch_page("pages/5.Problem Statement.py")
9
  st.write("""
10
  **A problem statement in machine learning defines the specific issue you want to solve using data and machine learning techniques. It should clearly explain:**
11
  - What the problem is
 
23
  """)
24
 
25
  if st.button("**Data Collection**"):
26
+ st.switch_page("pages/6.Data Collection.py")
27
  st.write("""
28
  **Collecting data is the first and most important step in any machine learning project. This is where you gather the information needed to train your machine learning model.**
29
 
 
46
  """)
47
 
48
  if st.button("**Simple EDA**"):
49
+ st.switch_page("pages/7.Simple EDA.py")
50
  st.write("""
51
  **EDA (Exploratory Data Analysis) is the process of exploring your data to understand its structure, patterns, and insights before building a machine learning model.Think of it as getting to know your data better!**
52
 
 
78
  """)
79
 
80
  if st.button("**Data Pre-processing**"):
81
+ st.switch_page("pages/8.Data Pre-processing.py")
82
  st.write("**Data preprocessing is the process of cleaning and preparing raw data so it can be used by a machine learning model. It ensures that the data is in the right format, free from errors, and ready for analysis.**")
83
  st.write("""
84
  **Why is Data Preprocessing Important?**
 
119
  """)
120
 
121
  if st.button("**Exploratory Data Analysis (EDA)**"):
122
+ st.switch_page("pages/9.Exploratory Data Analysis (EDA).py")
123
  st.write("**EDA in Machine Learning (Easy Language)EDA (Exploratory Data Analysis) is like getting to know your dataset before using it in a machine learning model. It helps you understand the data's structure, patterns, and relationships to decide how to process and use it effectively.**")
124
  st.write("""
125
  Why is EDA Important?
 
153
  """)
154
 
155
  if st.button("**Feature Engineering**"):
156
+ st.switch_page("pages/10.Feature Engineering.py")
157
  st.write("**Feature engineering is the process of creating, modifying, or selecting features (columns) in your dataset to make machine learning models work better. Features are the input data that the model uses to learn and make predictions.**")
158
  st.write("""
159
  Why is Feature Engineering Important?
 
190
  """)
191
 
192
  if st.button("**Training**"):
193
+ st.switch_page("pages/11.Training.py")
194
  st.write("**Training a machine learning model is the process of teaching the model to make predictions by learning patterns in the data. This is done by showing the model examples (training data) and adjusting it so it performs well.**")
195
  st.write("""
196
  **Steps in Training a Model:**
 
219
  """)
220
 
221
  if st.button("**Testing**"):
222
+ st.switch_page("pages/12.Testing.py")
223
  st.write("**Testing a machine learning model is the process of checking how well the model works on new, unseen data. This step helps you understand if the model can make accurate predictions or decisions when applied to real-world scenarios.**")
224
  st.write("""
225
  **Why Testing is Important?**
 
250
  """)
251
 
252
  if st.button("**Deployment**"):
253
+ st.switch_page("pages/13.Deployment.py")
254
  st.write("**Deployment is the process of making a trained machine learning model available for real-world use. It allows people or systems to use the model to make predictions or decisions on new data.**")
255
  st.write("""
256
  **Why Deployment is Important:**
 
283
  """)
284
 
285
  if st.button("**Monitoring**"):
286
+ st.switch_page("pages/14.Monitoring.py")
287
  st.write("**Monitoring a machine learning model means keeping track of how well it performs after it has been deployed. It helps you make sure the model continues to give accurate predictions when used in the real world.**")
288
  st.write("""
289
  **Why Monitoring is Important:**