Create pages/24.Introduction_of_metrics.py.py
Browse files
pages/24.Introduction_of_metrics.py.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def main():
|
4 |
+
st.title("Introduction to Metrics in Machine Learning")
|
5 |
+
|
6 |
+
st.markdown(
|
7 |
+
"""
|
8 |
+
### What is METRICS?
|
9 |
+
In machine learning, metrics are quantitative measures used to evaluate the performance of a model. The choice of metric depends on the problem type:
|
10 |
+
|
11 |
+
- Classification Metrics → Evaluate models that predict categories (e.g., spam detection).
|
12 |
+
- Regression Metrics → Evaluate models that predict continuous values (e.g., house price prediction).
|
13 |
+
"""
|
14 |
+
)
|
15 |
+
|
16 |
+
# Button to redirect to another Hugging Face space
|
17 |
+
if st.button("Explore More"):
|
18 |
+
st.markdown(
|
19 |
+
'<a href="https://huggingface.co/spaces/shwetashweta05/Metrics/edit/main/pages/Introduction_of_metrics.py" target="_blank">Click here to explore!</a>',
|
20 |
+
unsafe_allow_html=True,
|
21 |
+
)
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
main()
|