Spaces:
Sleeping
Sleeping
File size: 11,716 Bytes
43ffb0e e2170c7 0a8ed36 43ffb0e 04c9b90 43ffb0e 0a8ed36 43ffb0e e2170c7 43ffb0e 0a8ed36 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e 956dfd8 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e e2170c7 43ffb0e e2170c7 04c9b90 43ffb0e e2170c7 43ffb0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import base64
import tempfile
import os
import requests
import gradio as gr
from openai import OpenAI
# Available voices for audio generation
VOICES = ["alloy", "ash", "ballad", "coral", "echo", "fable", "onyx", "nova", "sage", "shimmer", "verse"]
def process_text_input(api_key, text_prompt, selected_voice):
"""Generate audio response from text input"""
try:
# Initialize OpenAI client with the provided API key
client = OpenAI(api_key=api_key)
completion = client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": selected_voice, "format": "wav"},
messages=[
{
"role": "user",
"content": text_prompt
}
]
)
# Save the audio to a temporary file
wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
temp_path = tempfile.mktemp(suffix=".wav")
with open(temp_path, "wb") as f:
f.write(wav_bytes)
# Get the text response directly from the API
text_response = completion.choices[0].message.content
return text_response, temp_path
except Exception as e:
return f"Error: {str(e)}", None
def process_audio_input(api_key, audio_path, text_prompt, selected_voice):
"""Process audio input and generate a response"""
try:
if not audio_path:
return "Please upload or record audio first.", None
# Initialize OpenAI client with the provided API key
client = OpenAI(api_key=api_key)
# Read audio file and encode to base64
with open(audio_path, "rb") as audio_file:
audio_data = audio_file.read()
encoded_audio = base64.b64encode(audio_data).decode('utf-8')
# Create message content with both text and audio
message_content = []
if text_prompt:
message_content.append({
"type": "text",
"text": text_prompt
})
message_content.append({
"type": "input_audio",
"input_audio": {
"data": encoded_audio,
"format": "wav"
}
})
# Call OpenAI API
completion = client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": selected_voice, "format": "wav"},
messages=[
{
"role": "user",
"content": message_content
}
]
)
# Save the audio response
wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
temp_path = tempfile.mktemp(suffix=".wav")
with open(temp_path, "wb") as f:
f.write(wav_bytes)
# Get the text response
text_response = completion.choices[0].message.content
return text_response, temp_path
except Exception as e:
return f"Error: {str(e)}", None
def transcribe_audio(api_key, audio_path):
"""Transcribe an audio file using OpenAI's API"""
try:
if not audio_path:
return "No audio file provided for transcription."
client = OpenAI(api_key=api_key)
with open(audio_path, "rb") as audio_file:
transcription = client.audio.transcriptions.create(
model="gpt-4o-transcribe",
file=audio_file
)
return transcription.text
except Exception as e:
return f"Transcription error: {str(e)}"
def download_example_audio():
"""Download an example audio file for testing"""
try:
url = "https://cdn.openai.com/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
# Save to a temporary file
temp_path = tempfile.mktemp(suffix=".wav")
with open(temp_path, "wb") as f:
f.write(response.content)
return temp_path
except Exception as e:
return None
def use_example_audio():
"""Load example audio for the interface"""
audio_path = download_example_audio()
return audio_path
# Create Gradio Interface
with gr.Blocks(title="OpenAI Audio Chat App") as app:
gr.Markdown("# OpenAI Audio Chat App")
gr.Markdown("Interact with GPT-4o audio model through text and audio inputs")
# API Key input (used across all tabs)
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API key here",
type="password"
)
with gr.Tab("Text to Audio"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text Prompt",
placeholder="Enter your question or prompt here...",
lines=3
)
text_voice = gr.Dropdown(
choices=VOICES,
value="alloy",
label="Voice"
)
text_submit = gr.Button("Generate Response")
with gr.Column():
text_output = gr.Textbox(label="AI Response (Text)", lines=5)
audio_output = gr.Audio(label="AI Response (Audio)")
transcribed_output = gr.Textbox(label="Transcription of Audio Response", lines=3)
# Function to process text input and then transcribe the resulting audio
def text_input_with_transcription(api_key, text_prompt, voice):
text_response, audio_path = process_text_input(api_key, text_prompt, voice)
# Get transcription of the generated audio
if audio_path:
transcription = transcribe_audio(api_key, audio_path)
else:
transcription = "No audio generated to transcribe."
return text_response, audio_path, transcription
text_submit.click(
fn=text_input_with_transcription,
inputs=[api_key, text_input, text_voice],
outputs=[text_output, audio_output, transcribed_output]
)
with gr.Tab("Audio Input to Audio Response"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Audio Input",
type="filepath",
sources=["microphone", "upload"]
)
example_btn = gr.Button("Use Example Audio")
accompanying_text = gr.Textbox(
label="Accompanying Text (Optional)",
placeholder="Add any text context or question about the audio...",
lines=2
)
audio_voice = gr.Dropdown(
choices=VOICES,
value="alloy",
label="Response Voice"
)
audio_submit = gr.Button("Process Audio & Generate Response")
with gr.Column():
audio_text_output = gr.Textbox(label="AI Response (Text)", lines=5)
audio_audio_output = gr.Audio(label="AI Response (Audio)")
audio_transcribed_output = gr.Textbox(label="Transcription of Audio Response", lines=3)
input_transcription = gr.Textbox(label="Transcription of Input Audio", lines=3)
# Function to process audio input, generate response, and provide transcriptions
def audio_input_with_transcription(api_key, audio_path, text_prompt, voice):
# First transcribe the input audio
input_transcription = "N/A"
if audio_path:
input_transcription = transcribe_audio(api_key, audio_path)
# Process the audio input and get response
text_response, response_audio_path = process_audio_input(api_key, audio_path, text_prompt, voice)
# Transcribe the response audio
response_transcription = "No audio generated to transcribe."
if response_audio_path:
response_transcription = transcribe_audio(api_key, response_audio_path)
return text_response, response_audio_path, response_transcription, input_transcription
audio_submit.click(
fn=audio_input_with_transcription,
inputs=[api_key, audio_input, accompanying_text, audio_voice],
outputs=[audio_text_output, audio_audio_output, audio_transcribed_output, input_transcription]
)
example_btn.click(
fn=use_example_audio,
inputs=[],
outputs=[audio_input]
)
with gr.Tab("Voice Samples"):
gr.Markdown("## Listen to samples of each voice")
def generate_voice_sample(api_key, voice_type):
try:
if not api_key:
return "Please enter your OpenAI API key first.", None, "No transcription available."
client = OpenAI(api_key=api_key)
completion = client.chat.completions.create(
model="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": voice_type, "format": "wav"},
messages=[
{
"role": "user",
"content": f"This is a sample of the {voice_type} voice. It has its own unique tone and character."
}
]
)
# Save the audio to a temporary file
wav_bytes = base64.b64decode(completion.choices[0].message.audio.data)
temp_path = tempfile.mktemp(suffix=".wav")
with open(temp_path, "wb") as f:
f.write(wav_bytes)
# Get transcription
transcription = transcribe_audio(api_key, temp_path)
return f"Sample generated with voice: {voice_type}", temp_path, transcription
except Exception as e:
return f"Error: {str(e)}", None, "No transcription available."
with gr.Row():
sample_voice = gr.Dropdown(
choices=VOICES,
value="alloy",
label="Select Voice Sample"
)
sample_btn = gr.Button("Generate Sample")
with gr.Row():
sample_text = gr.Textbox(label="Status")
sample_audio = gr.Audio(label="Voice Sample")
sample_transcription = gr.Textbox(label="Transcription", lines=3)
sample_btn.click(
fn=generate_voice_sample,
inputs=[api_key, sample_voice],
outputs=[sample_text, sample_audio, sample_transcription]
)
gr.Markdown("""
## Notes:
- You must provide your OpenAI API key in the field above
- The model used is `gpt-4o-audio-preview` for conversation and `gpt-4o-transcribe` for transcriptions
- Audio inputs should be in WAV format
- Available voices: alloy, ash, ballad, coral, echo, fable, onyx, nova, sage, shimmer, and verse
- Each audio response is automatically transcribed for verification
""")
if __name__ == "__main__":
app.launch() |