File size: 10,150 Bytes
7ab84cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a9dbab
7ab84cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a9dbab
7ab84cb
3a9dbab
7ab84cb
 
3a9dbab
 
 
 
 
 
 
 
 
 
7ab84cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a9dbab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab84cb
3a9dbab
7ab84cb
 
 
3a9dbab
7ab84cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a9dbab
7ab84cb
 
 
 
3a9dbab
7ab84cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
import openai
import fitz  # PyMuPDF for PDF processing
import os
import tempfile

# Variable to store API key
api_key = ""

# Function to update API key
def set_api_key(key):
    global api_key
    api_key = key
    return "API Key Set Successfully!"

# Function to extract text from PDF
def extract_text_from_pdf(pdf_path):
    try:
        doc = fitz.open(pdf_path)
        text = "\n".join([page.get_text("text") for page in doc])
        return text
    except Exception as e:
        return f"Error extracting text from PDF: {str(e)}"

# Function to interact with OpenAI API for systematic review
def generate_systematic_review(pdf_files, review_question, include_tables=True):
    if not api_key:
        return "Please enter your OpenAI API key first."
    
    if not pdf_files:
        return "Please upload at least one PDF file."
    
    if not review_question:
        return "Please enter a review question."
    
    try:
        openai.api_key = api_key
        
        # Create the system message with systematic review guidelines
        system_prompt = """You are an expert academic assistant. Create a systematic review in HTML format using <h2>, <h3>, <p>, <ul>, and <table> tags. The Systematic Review must be in great details. Structure it using these steps:
        Step 1: Identify a Research Field
        The first step in writing a systematic review paper is to identify a research field. This involves selecting a specific area of study that you are interested in and want to explore further.
        
        Step 2: Generate a Research Question
        Once you have identified your research field, the next step is to generate a research question. This question should be specific, measurable, achievable, relevant, and time-bound (SMART).
        
        Step 3: Create a Protocol
        After generating your research question, the next step is to create a protocol. A detailed plan of how you will conduct your research, including the methods you will use, the data you will collect, and the analysis you will perform.
        
        Step 4: Evaluate Relevant Literature
        The fourth step is to evaluate relevant literature. This involves searching for and reviewing existing studies related to your research question. You should critically evaluate the quality of these studies and identify any gaps or limitations in the current literature.
        
        Step 5: Investigate Sources for Answers
        The fifth step is to investigate sources for answers. This involves searching for and accessing relevant data and information that will help you answer your research question.
        
        Step 6: Collect Data as per Protocol
        The sixth step is to collect data as per protocol. This involves implementing the methods outlined in your protocol and collecting the data specified. You should ensure that your data collection methods are rigorous and reliable.
        
        Step 7: Data Extraction
        The seventh step is to extract the data. This involves organizing and analyzing the data you have collected, and extracting the relevant information that will help you answer your research question.
        
        Step 8: Critical Analysis of Results
        The eighth step is to conduct a critical analysis of your results. This involves interpreting your findings, identifying patterns and trends, and drawing conclusions based on your data.
        
        Step 9: Interpreting Derivations
        The ninth step is to interpret the derivations. This involves taking the conclusions you have drawn from your data and interpreting them in the context of your research question.
        
        Step 10: Concluding Statements
        The final step is to make concluding statements. This involves summarizing your findings and drawing conclusions based on your research. You should also provide recommendations for future research and implications for practice.
        
        Step-11:
        Please include references in the form of citation and also link to the reference papers.
        """
        
        # Extract text from each PDF
        pdf_texts = []
        pdf_names = []
        
        for pdf_file in pdf_files:
            if isinstance(pdf_file, str):  # If it's already a path
                pdf_path = pdf_file
            else:  # If it's a file object
                pdf_path = pdf_file.name
                
            pdf_name = os.path.basename(pdf_path)
            pdf_text = extract_text_from_pdf(pdf_path)
            
            pdf_texts.append(pdf_text)
            pdf_names.append(pdf_name)
        
        # Prepare the user prompt with the review question and instructions
        table_instruction = ""
        if include_tables:
            table_instruction = " Please include important new generated tables in your review."
            
        user_prompt = f"Please generate a systematic review of the following {len(pdf_files)} papers: {', '.join(pdf_names)}.{table_instruction}\n\nReview Question: {review_question}"
        
        # Create the messages for the API call
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt + "\n\n" + "\n\n".join([f"Paper {i+1} - {pdf_names[i]}:\n{pdf_texts[i]}" for i in range(len(pdf_texts))])}
        ]
        
        # Call the API with temperature=1 and top_p=1 as specified
        response = openai.ChatCompletion.create(
            model="gpt-4.1",
            messages=messages,
            temperature=0.7,
            top_p=1,
            max_tokens=16384
        )
        
        # Format the response in HTML
        review_content = response["choices"][0]["message"]["content"]
        
        # Create a basic HTML structure
        html_output = f"""
        <h2>Systematic Review</h2>
        <p>{review_content}</p>
        """
        
        return html_output
    
    except Exception as e:
        return f"Error generating systematic review: {str(e)}"

# Function to save uploaded files
def save_uploaded_files(files):
    if not files:
        return []
    
    saved_paths = []
    for file in files:
        if file is not None:
            # Create a temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
                tmp_file.write(file)
                saved_paths.append(tmp_file.name)
    
    return saved_paths

# Add CSS styling
custom_css = """
<style>
    #generate_button {
        background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
        color: white;
        font-weight: bold;
    }
    #generate_button:hover {
        background: linear-gradient(135deg, #5b10f1 0%, #9f3ef3 100%); /* Slightly lighter */
    }
    #api_key_button {
        background: linear-gradient(135deg, #68d391 0%, #48bb78 100%); /* Green gradient */
        color: white;
        font-weight: bold;
        margin-top: 27px;
    }
    #api_key_button:hover {
        background: linear-gradient(135deg, #38a169 0%, #68d391 100%); /* Slightly darker green */
    }
    .gradio-container {
        font-family: 'Arial', sans-serif;
        background-color: #f0f4f8;
    }
</style>
"""

# Gradio UI Layout
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("# Systematic Review Generator for Research Papers")
    
    with gr.Accordion("How to Use This App", open=True):
        gr.Markdown(""" 
        ### Getting Started:
        1. Enter your OpenAI API key in the field below and click "Set API Key"
        2. Upload multiple PDF research papers (2 or more recommended)
        3. Enter your review question or topic
        4. Check the "Include Tables" option if you want the review to include comparison tables
        5. Click "Generate Systematic Review" to start the process
        
        ### Tips:
        - For best results, upload papers that are related to the same research topic or field
        - Be specific in your review question to get more focused results
        - The generated review will follow a systematic structure including research field identification, data extraction, analysis, and conclusions
        - The more papers you upload, the more comprehensive the review will be
        """)
    
    # API Key Input
    with gr.Row():
        api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password")
        api_key_button = gr.Button("Set API Key", elem_id="api_key_button")
        api_key_output = gr.Textbox(label="API Key Status", interactive=False)
    
    # PDF Upload and Review Settings
    with gr.Row():
        with gr.Column():
            pdf_files = gr.File(label="Upload PDF Research Papers", file_count="multiple", type="binary")
            review_question = gr.Textbox(label="Review Question or Topic", value="Please Generate a systematic review of the following papers.")
            include_tables = gr.Checkbox(label="Include Comparison Tables", value=True)
            generate_button = gr.Button("Generate Systematic Review", elem_id="generate_button")
        
    # Output
    review_output = gr.HTML(label="Systematic Review")
    
    # Button actions
    api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output])
    
    # Generate systematic review
    def process_files_and_generate_review(files, question, include_tables):
        if not files:
            return "Please upload at least one PDF file."
        
        # Save uploaded files
        saved_paths = save_uploaded_files(files)
        
        # Generate review
        review = generate_systematic_review(saved_paths, question, include_tables)
        
        # Clean up temporary files
        for path in saved_paths:
            try:
                os.remove(path)
            except:
                pass
        
        return review
    
    generate_button.click(
        process_files_and_generate_review, 
        inputs=[pdf_files, review_question, include_tables], 
        outputs=[review_output]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(share=True)