Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import re | |
# Load the model on CPU | |
def load_model(): | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"prithivMLmods/Qwen2-VL-OCR-2B-Instruct", | |
torch_dtype=torch.float32, | |
device_map="cpu" | |
) | |
processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct") | |
return model, processor | |
# Function to extract medicine names | |
def extract_medicine_names(image): | |
model, processor = load_model() | |
# Prepare the message with the specific prompt for medicine extraction | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, | |
}, | |
{"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."}, | |
], | |
} | |
] | |
# Prepare for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
# Generate output | |
generated_ids = model.generate(**inputs, max_new_tokens=256) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
# Remove <|im_end|> and any other special tokens that might appear in the output | |
output_text = output_text.replace("<|im_end|>", "").strip() | |
return output_text | |
# Create a singleton model and processor to avoid reloading for each request | |
model_instance = None | |
processor_instance = None | |
def get_model_and_processor(): | |
global model_instance, processor_instance | |
if model_instance is None or processor_instance is None: | |
model_instance, processor_instance = load_model() | |
return model_instance, processor_instance | |
# Optimized extraction function that uses the singleton model | |
def extract_medicine_names_optimized(image): | |
if image is None: | |
return "Please upload an image." | |
model, processor = get_model_and_processor() | |
# Prepare the message with the specific prompt for medicine extraction | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, | |
}, | |
{"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."}, | |
], | |
} | |
] | |
# Prepare for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
# Generate output | |
generated_ids = model.generate(**inputs, max_new_tokens=256) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
# Remove <|im_end|> and any other special tokens that might appear in the output | |
output_text = output_text.replace("<|im_end|>", "").strip() | |
return output_text | |
# Create Gradio interface | |
with gr.Blocks(title="Medicine Name Extractor") as app: | |
gr.Markdown("# Medicine Name Extractor") | |
gr.Markdown("Upload a medical prescription image to extract the names of medicines.") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Upload Prescription Image") | |
extract_btn = gr.Button("Extract Medicine Names", variant="primary") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Extracted Medicine Names", lines=10) | |
extract_btn.click( | |
fn=extract_medicine_names_optimized, | |
inputs=input_image, | |
outputs=output_text | |
) | |
gr.Markdown("### Notes") | |
gr.Markdown("- This tool uses the Qwen2-VL-OCR model to extract text from prescription images") | |
gr.Markdown("- For best results, ensure the prescription image is clear and readable") | |
gr.Markdown("- Processing may take some time as the model runs on CPU") | |
# Launch the app | |
if __name__ == "__main__": | |
app.launch() |