Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from unsloth import FastLanguageModel
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model_and_tokenizer(model_name, hf_token):
|
8 |
+
# Load the model and tokenizer
|
9 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
10 |
+
model_name=model_name,
|
11 |
+
max_seq_length=2048,
|
12 |
+
dtype=None,
|
13 |
+
load_in_4bit=True,
|
14 |
+
token=hf_token,
|
15 |
+
)
|
16 |
+
FastLanguageModel.for_inference(model) # Enable optimized inference
|
17 |
+
return model, tokenizer
|
18 |
+
|
19 |
+
def generate_solution(problem, model, tokenizer):
|
20 |
+
# Prepare the prompt using the same format as training
|
21 |
+
prompt_template = """Below is an instruction that describes a task, paired with an input that provides further context.
|
22 |
+
Write a response that appropriately completes the request.
|
23 |
+
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
|
24 |
+
|
25 |
+
### Instruction:
|
26 |
+
You are a math expert. Please solve the following math problem.
|
27 |
+
|
28 |
+
### Problem:
|
29 |
+
{}
|
30 |
+
|
31 |
+
### Solution:
|
32 |
+
<think>
|
33 |
+
{{}}
|
34 |
+
</think>
|
35 |
+
{{}}"""
|
36 |
+
|
37 |
+
prompt = prompt_template.format(problem)
|
38 |
+
|
39 |
+
# Tokenize and prepare input
|
40 |
+
inputs = tokenizer(
|
41 |
+
[prompt],
|
42 |
+
return_tensors="pt",
|
43 |
+
padding=True,
|
44 |
+
).to("cuda")
|
45 |
+
|
46 |
+
# Generate solution
|
47 |
+
outputs = model.generate(
|
48 |
+
input_ids=inputs.input_ids,
|
49 |
+
attention_mask=inputs.attention_mask,
|
50 |
+
max_new_tokens=2000,
|
51 |
+
temperature=0.7,
|
52 |
+
pad_token_id=tokenizer.eos_token_id,
|
53 |
+
use_cache=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
# Decode and format output
|
57 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
58 |
+
|
59 |
+
# Extract the generated solution part
|
60 |
+
try:
|
61 |
+
solution = full_response.split("### Solution:")[1].strip()
|
62 |
+
except IndexError:
|
63 |
+
solution = full_response # Fallback in case formatting fails
|
64 |
+
|
65 |
+
return solution
|
66 |
+
|
67 |
+
# Streamlit app
|
68 |
+
st.title("Math Problem Solver")
|
69 |
+
hf_token = st.text_input("Enter your Hugging Face token:")
|
70 |
+
model_name = "shukdevdatta123/DeepSeek-R1-Math-Solutions"
|
71 |
+
|
72 |
+
if hf_token:
|
73 |
+
# Load model and tokenizer
|
74 |
+
model, tokenizer = load_model_and_tokenizer(model_name, hf_token)
|
75 |
+
|
76 |
+
# Input for custom problem
|
77 |
+
custom_problem = st.text_input("Enter a math problem:")
|
78 |
+
|
79 |
+
if st.button("Generate Solution"):
|
80 |
+
if custom_problem:
|
81 |
+
solution = generate_solution(custom_problem, model, tokenizer)
|
82 |
+
st.write("### Generated Solution:")
|
83 |
+
st.write(solution)
|
84 |
+
else:
|
85 |
+
st.error("Please enter a math problem.")
|
86 |
+
else:
|
87 |
+
st.warning("Please enter your Hugging Face token to load the model.")
|