shubham5524 commited on
Commit
afd6ea6
·
verified ·
1 Parent(s): fc36669

Upload 2 files

Browse files
Files changed (2) hide show
  1. logreg_model.joblib +0 -0
  2. main.py +120 -0
logreg_model.joblib ADDED
Binary file (7.2 kB). View file
 
main.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, Query
2
+ from fastapi.responses import JSONResponse
3
+ import torch
4
+ import torchvision
5
+ import numpy as np
6
+ import requests
7
+ import skimage.io
8
+ import cv2
9
+ import tempfile
10
+ import os
11
+ from PIL import Image
12
+ from transformers import AutoImageProcessor, AutoModel
13
+ import joblib
14
+ from pytorch_grad_cam import GradCAM
15
+ from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
16
+ import torchxrayvision as xrv
17
+ import requests
18
+ from io import BytesIO
19
+
20
+ import logging
21
+ logging.getLogger("uvicorn").setLevel(logging.WARNING)
22
+
23
+
24
+ app = FastAPI()
25
+
26
+ cxr_model = xrv.models.DenseNet(weights="densenet121-res224-all")
27
+ cxr_model.eval()
28
+
29
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
+ tb_processor = AutoImageProcessor.from_pretrained("StanfordAIMI/dinov2-base-xray-224")
31
+ tb_model = AutoModel.from_pretrained("StanfordAIMI/dinov2-base-xray-224").to(device)
32
+ logreg = joblib.load("logreg_model.joblib")
33
+
34
+ def preprocess_image(image_path):
35
+ img = skimage.io.imread(image_path)
36
+ img = xrv.datasets.normalize(img, 255)
37
+
38
+ if img.ndim == 3:
39
+ img = img.mean(2)[None, ...]
40
+ elif img.ndim == 2:
41
+ img = img[None, ...]
42
+
43
+ transform = torchvision.transforms.Compose([
44
+ xrv.datasets.XRayCenterCrop(),
45
+ xrv.datasets.XRayResizer(224)
46
+ ])
47
+ img = transform(img)
48
+ return torch.from_numpy(img)
49
+
50
+ def get_predictions(img_tensor, model):
51
+ with torch.no_grad():
52
+ outputs = model(img_tensor[None, ...])
53
+ preds = dict(zip(model.pathologies, outputs[0].detach().numpy()))
54
+ return preds, outputs
55
+
56
+ def get_top_preds(preds, tolerance=0.01, topk=5):
57
+ sorted_preds = sorted(preds.items(), key=lambda x: -x[1])
58
+ top_conf = sorted_preds[0][1]
59
+ similar_preds = [(i, p, conf) for i, (p, conf) in enumerate(sorted_preds)
60
+ if abs(conf - top_conf) <= tolerance][:topk]
61
+ return sorted_preds, similar_preds
62
+
63
+ def get_bounding_boxes(img_tensor, model, similar_preds):
64
+ boxes = {}
65
+ target_layer = model.features[-1]
66
+ for idx, pathology, conf in similar_preds:
67
+ cam = GradCAM(model=model, target_layers=[target_layer])
68
+ pred_index = list(model.pathologies).index(pathology)
69
+ grayscale_cam = cam(input_tensor=img_tensor[None, ...],
70
+ targets=[ClassifierOutputTarget(pred_index)])[0]
71
+ cam_resized = cv2.resize(grayscale_cam, (224, 224))
72
+ cam_uint8 = (cam_resized * 255).astype(np.uint8)
73
+ _, thresh = cv2.threshold(cam_uint8, 100, 255, cv2.THRESH_BINARY)
74
+ contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
75
+ if contours:
76
+ x, y, w, h = cv2.boundingRect(contours[0])
77
+ boxes[pathology] = [[x, y], [x + w, y + h]]
78
+ return boxes
79
+
80
+ def predict_tb(image_path):
81
+ image = Image.open(image_path)
82
+ inputs = tb_processor(images=image, return_tensors="pt").to(device)
83
+ with torch.no_grad():
84
+ outputs = tb_model(**inputs)
85
+ embeddings = outputs.pooler_output.cpu().numpy()
86
+ prediction = logreg.predict(embeddings)
87
+ return int(prediction[0] == "tb")
88
+
89
+ @app.get("/predict")
90
+ async def predict_cxr(image_url: str = Query(..., description="URL to a chest X-ray image")):
91
+ try:
92
+ response = requests.get(image_url)
93
+ if response.status_code != 200:
94
+ return JSONResponse(content={"error": "Failed to download image"}, status_code=400)
95
+
96
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
97
+ tmp.write(response.content)
98
+ tmp_path = tmp.name
99
+
100
+ img_tensor = preprocess_image(tmp_path)
101
+
102
+ preds, _ = get_predictions(img_tensor, cxr_model)
103
+ sorted_preds, similar_preds = get_top_preds(preds)
104
+
105
+ prediction_result = {k: float(f"{v:.2f}") for k, v in preds.items()}
106
+
107
+ bounding_boxes = get_bounding_boxes(img_tensor, cxr_model, similar_preds)
108
+
109
+ tb_result = predict_tb(tmp_path)
110
+
111
+ os.remove(tmp_path)
112
+
113
+ return JSONResponse(content={
114
+ "prediction_result": prediction_result,
115
+ "bounding_box": bounding_boxes, # top-left , bottom-right coordinates
116
+ "tb_finding": tb_result
117
+ })
118
+
119
+ except Exception as e:
120
+ return JSONResponse(content={"error": str(e)}, status_code=500)