shubham5524 commited on
Commit
9cfc805
·
verified ·
1 Parent(s): 53c7623

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -81
app.py CHANGED
@@ -1,31 +1,38 @@
1
  from fastapi import FastAPI, Query
2
- from pydantic import BaseModel
3
- from typing import List, Tuple
4
- from fastapi import Body
5
-
6
  import torch
7
- import torchxrayvision as xrv
8
  import torchvision
9
- import skimage.io
10
  import numpy as np
11
  import requests
 
12
  import cv2
13
-
14
- from io import BytesIO
15
- import matplotlib.pyplot as plt
 
 
16
  from pytorch_grad_cam import GradCAM
17
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
18
- from pytorch_grad_cam.utils.image import show_cam_on_image
 
 
 
 
 
 
19
 
20
  app = FastAPI()
21
 
22
- model = xrv.models.DenseNet(weights="densenet121-res224-all")
23
- model.eval()
24
 
 
 
 
 
25
 
26
- def preprocess_image_from_url(image_url: str) -> torch.Tensor:
27
- response = requests.get(image_url)
28
- img = skimage.io.imread(BytesIO(response.content))
29
  img = xrv.datasets.normalize(img, 255)
30
 
31
  if img.ndim == 3:
@@ -38,83 +45,76 @@ def preprocess_image_from_url(image_url: str) -> torch.Tensor:
38
  xrv.datasets.XRayResizer(224)
39
  ])
40
  img = transform(img)
41
- img_tensor = torch.from_numpy(img)
42
- return img_tensor
43
-
44
 
45
- def get_predictions_and_bounding_box(img_tensor: torch.Tensor):
46
  with torch.no_grad():
47
- output = model(img_tensor[None, ...])[0]
48
-
49
- predictions = dict(zip(model.pathologies, output.numpy()))
50
- sorted_preds = sorted(predictions.items(), key=lambda x: -x[1])
51
-
52
- top_pred_label, top_conf = sorted_preds[0]
53
- top_pred_index = list(model.pathologies).index(top_pred_label)
54
-
 
 
 
 
 
55
  target_layer = model.features[-1]
56
- cam = GradCAM(model=model, target_layers=[target_layer])
57
- grayscale_cam = cam(input_tensor=img_tensor[None, ...],
58
- targets=[ClassifierOutputTarget(top_pred_index)])[0, :]
59
-
60
- input_img = img_tensor.numpy()[0]
61
- input_img_norm = (input_img - input_img.min()) / (input_img.max() - input_img.min())
62
- input_img_rgb = cv2.cvtColor((input_img_norm * 255).astype(np.uint8), cv2.COLOR_GRAY2RGB)
63
-
64
- cam_resized = cv2.resize(grayscale_cam, (224, 224))
65
- cam_uint8 = (cam_resized * 255).astype(np.uint8)
66
- _, thresh = cv2.threshold(cam_uint8, 100, 255, cv2.THRESH_BINARY)
67
- contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 
 
 
 
 
 
 
 
 
 
68
 
69
- bounding_boxes = []
70
- for cnt in contours:
71
- x, y, w, h = cv2.boundingRect(cnt)
72
- bounding_boxes.append((int(x), int(y), int(x + w), int(y + h)))
 
 
73
 
74
- return sorted_preds, bounding_boxes
 
 
75
 
 
76
 
77
- class Prediction(BaseModel):
78
- label: str
79
- confidence: float
80
 
 
81
 
82
- class PredictionResponse(BaseModel):
83
- predictions: List[Prediction]
84
- top_prediction_bounding_boxes: List[Tuple[int, int, int, int]]
85
 
 
86
 
87
- @app.get("/predict", response_model=PredictionResponse)
88
- def predict(image_url: str = Query(..., description="URL of chest X-ray image")):
89
- try:
90
- img_tensor = preprocess_image_from_url(image_url)
91
- preds, bboxes = get_predictions_and_bounding_box(img_tensor)
92
- prediction_list = [Prediction(label=label, confidence=float(conf)) for label, conf in preds]
93
-
94
- return PredictionResponse(
95
- predictions=prediction_list,
96
- top_prediction_bounding_boxes=bboxes
97
- )
98
- except Exception as e:
99
- return {"error": str(e)}
100
 
101
- class URLRequest(BaseModel):
102
- url: str
 
 
 
103
 
104
- @app.post("/predict", response_model=PredictionResponse)
105
- def predict_from_url(body: URLRequest):
106
- try:
107
- img_tensor = preprocess_image_from_url(body.url)
108
- preds, bboxes = get_predictions_and_bounding_box(img_tensor)
109
- prediction_list = [Prediction(label=label, confidence=float(conf)) for label, conf in preds]
110
-
111
- return PredictionResponse(
112
- predictions=prediction_list,
113
- top_prediction_bounding_boxes=bboxes
114
- )
115
  except Exception as e:
116
- return {"error": str(e)}
117
-
118
-
119
-
120
- # uvicorn app:app --reload
 
1
  from fastapi import FastAPI, Query
2
+ from fastapi.responses import JSONResponse
 
 
 
3
  import torch
 
4
  import torchvision
 
5
  import numpy as np
6
  import requests
7
+ import skimage.io
8
  import cv2
9
+ import tempfile
10
+ import os
11
+ from PIL import Image
12
+ from transformers import AutoImageProcessor, AutoModel
13
+ import joblib
14
  from pytorch_grad_cam import GradCAM
15
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
16
+ import torchxrayvision as xrv
17
+ import requests
18
+ from io import BytesIO
19
+
20
+ import logging
21
+ logging.getLogger("uvicorn").setLevel(logging.WARNING)
22
+
23
 
24
  app = FastAPI()
25
 
26
+ cxr_model = xrv.models.DenseNet(weights="densenet121-res224-all")
27
+ cxr_model.eval()
28
 
29
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
+ tb_processor = AutoImageProcessor.from_pretrained("StanfordAIMI/dinov2-base-xray-224")
31
+ tb_model = AutoModel.from_pretrained("StanfordAIMI/dinov2-base-xray-224").to(device)
32
+ logreg = joblib.load("logreg_model.joblib")
33
 
34
+ def preprocess_image(image_path):
35
+ img = skimage.io.imread(image_path)
 
36
  img = xrv.datasets.normalize(img, 255)
37
 
38
  if img.ndim == 3:
 
45
  xrv.datasets.XRayResizer(224)
46
  ])
47
  img = transform(img)
48
+ return torch.from_numpy(img)
 
 
49
 
50
+ def get_predictions(img_tensor, model):
51
  with torch.no_grad():
52
+ outputs = model(img_tensor[None, ...])
53
+ preds = dict(zip(model.pathologies, outputs[0].detach().numpy()))
54
+ return preds, outputs
55
+
56
+ def get_top_preds(preds, tolerance=0.01, topk=5):
57
+ sorted_preds = sorted(preds.items(), key=lambda x: -x[1])
58
+ top_conf = sorted_preds[0][1]
59
+ similar_preds = [(i, p, conf) for i, (p, conf) in enumerate(sorted_preds)
60
+ if abs(conf - top_conf) <= tolerance][:topk]
61
+ return sorted_preds, similar_preds
62
+
63
+ def get_bounding_boxes(img_tensor, model, similar_preds):
64
+ boxes = {}
65
  target_layer = model.features[-1]
66
+ for idx, pathology, conf in similar_preds:
67
+ cam = GradCAM(model=model, target_layers=[target_layer])
68
+ pred_index = list(model.pathologies).index(pathology)
69
+ grayscale_cam = cam(input_tensor=img_tensor[None, ...],
70
+ targets=[ClassifierOutputTarget(pred_index)])[0]
71
+ cam_resized = cv2.resize(grayscale_cam, (224, 224))
72
+ cam_uint8 = (cam_resized * 255).astype(np.uint8)
73
+ _, thresh = cv2.threshold(cam_uint8, 100, 255, cv2.THRESH_BINARY)
74
+ contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
75
+ if contours:
76
+ x, y, w, h = cv2.boundingRect(contours[0])
77
+ boxes[pathology] = [[x, y], [x + w, y + h]]
78
+ return boxes
79
+
80
+ def predict_tb(image_path):
81
+ image = Image.open(image_path)
82
+ inputs = tb_processor(images=image, return_tensors="pt").to(device)
83
+ with torch.no_grad():
84
+ outputs = tb_model(**inputs)
85
+ embeddings = outputs.pooler_output.cpu().numpy()
86
+ prediction = logreg.predict(embeddings)
87
+ return int(prediction[0] == "tb")
88
 
89
+ @app.get("/predict")
90
+ async def predict_cxr(image_url: str = Query(..., description="URL to a chest X-ray image")):
91
+ try:
92
+ response = requests.get(image_url)
93
+ if response.status_code != 200:
94
+ return JSONResponse(content={"error": "Failed to download image"}, status_code=400)
95
 
96
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
97
+ tmp.write(response.content)
98
+ tmp_path = tmp.name
99
 
100
+ img_tensor = preprocess_image(tmp_path)
101
 
102
+ preds, _ = get_predictions(img_tensor, cxr_model)
103
+ sorted_preds, similar_preds = get_top_preds(preds)
 
104
 
105
+ prediction_result = {k: float(f"{v:.2f}") for k, v in preds.items()}
106
 
107
+ bounding_boxes = get_bounding_boxes(img_tensor, cxr_model, similar_preds)
 
 
108
 
109
+ tb_result = predict_tb(tmp_path)
110
 
111
+ os.remove(tmp_path)
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
+ return JSONResponse(content={
114
+ "prediction_result": prediction_result,
115
+ "bounding_box": bounding_boxes, # top-left , bottom-right coordinates
116
+ "tb_finding": tb_result
117
+ })
118
 
 
 
 
 
 
 
 
 
 
 
 
119
  except Exception as e:
120
+ return JSONResponse(content={"error": str(e)}, status_code=500)