from transformers import AutoTokenizer, TFAutoModelForSequenceClassification from sklearn.metrics import classification_report import tensorflow as tf import pandas as pd def get_classification_report(): try: # Load test data df = pd.read_csv("test.csv") texts = df["text"].tolist() true_labels = df["label"].tolist() # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("shrish191/sentiment-bert") model = TFAutoModelForSequenceClassification.from_pretrained("shrish191/sentiment-bert") # Tokenize inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf") outputs = model(inputs) preds = tf.math.argmax(outputs.logits, axis=1).numpy() # Generate report report = classification_report(true_labels, preds, target_names=["negative", "neutral", "positive"]) return report except Exception as e: return f"⚠️ Error occurred: {str(e)}"