def get_classification_report(): from sklearn.metrics import classification_report import pandas as pd # Load your test data df = pd.read_csv("test.csv") texts = df["text"].tolist() true_labels = df["label"].tolist() # Load tokenizer and model #tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment") #model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment") fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) # Tokenize and predict inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf") outputs = model(inputs) predictions = tf.math.argmax(outputs.logits, axis=1).numpy() # Generate report report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"]) return report