shrish191 commited on
Commit
a062f7c
·
verified ·
1 Parent(s): 0ae389f

Delete evaluate.py

Browse files
Files changed (1) hide show
  1. evaluate.py +0 -41
evaluate.py DELETED
@@ -1,41 +0,0 @@
1
- import gradio as gr
2
- from transformers import TFBertForSequenceClassification, BertTokenizer
3
- import tensorflow as tf
4
- import praw
5
- import os
6
- import pytesseract
7
- from PIL import Image
8
- import cv2
9
- import numpy as np
10
- import re
11
-
12
-
13
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
14
- import torch
15
- from scipy.special import softmax
16
- import matplotlib.pyplot as plt
17
- import pandas as pd
18
- def get_classification_report():
19
- from sklearn.metrics import classification_report
20
- import pandas as pd
21
-
22
- # Load your test data
23
- df = pd.read_csv("test.csv")
24
- texts = df["text"].tolist()
25
- true_labels = df["label"].tolist()
26
-
27
- # Load tokenizer and model
28
- #tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment")
29
- #model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment")
30
- fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
31
- tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
32
- model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
33
-
34
- # Tokenize and predict
35
- inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf")
36
- outputs = model(inputs)
37
- predictions = tf.math.argmax(outputs.logits, axis=1).numpy()
38
-
39
- # Generate report
40
- report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"])
41
- return report