Delete evaluate.py
Browse files- evaluate.py +0 -41
evaluate.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import TFBertForSequenceClassification, BertTokenizer
|
3 |
-
import tensorflow as tf
|
4 |
-
import praw
|
5 |
-
import os
|
6 |
-
import pytesseract
|
7 |
-
from PIL import Image
|
8 |
-
import cv2
|
9 |
-
import numpy as np
|
10 |
-
import re
|
11 |
-
|
12 |
-
|
13 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
14 |
-
import torch
|
15 |
-
from scipy.special import softmax
|
16 |
-
import matplotlib.pyplot as plt
|
17 |
-
import pandas as pd
|
18 |
-
def get_classification_report():
|
19 |
-
from sklearn.metrics import classification_report
|
20 |
-
import pandas as pd
|
21 |
-
|
22 |
-
# Load your test data
|
23 |
-
df = pd.read_csv("test.csv")
|
24 |
-
texts = df["text"].tolist()
|
25 |
-
true_labels = df["label"].tolist()
|
26 |
-
|
27 |
-
# Load tokenizer and model
|
28 |
-
#tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment")
|
29 |
-
#model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment")
|
30 |
-
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
32 |
-
model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
|
33 |
-
|
34 |
-
# Tokenize and predict
|
35 |
-
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf")
|
36 |
-
outputs = model(inputs)
|
37 |
-
predictions = tf.math.argmax(outputs.logits, axis=1).numpy()
|
38 |
-
|
39 |
-
# Generate report
|
40 |
-
report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"])
|
41 |
-
return report
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|