Delete evaluate.py
Browse files- evaluate.py +0 -26
evaluate.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
2 |
-
from sklearn.metrics import classification_report
|
3 |
-
import tensorflow as tf
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
def get_classification_report():
|
7 |
-
try:
|
8 |
-
# Load test data
|
9 |
-
df = pd.read_csv("test.csv")
|
10 |
-
texts = df["text"].tolist()
|
11 |
-
true_labels = df["label"].tolist()
|
12 |
-
|
13 |
-
# Load tokenizer and model
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained("shrish191/sentiment-bert")
|
15 |
-
model = TFAutoModelForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
16 |
-
|
17 |
-
# Tokenize
|
18 |
-
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf")
|
19 |
-
outputs = model(inputs)
|
20 |
-
preds = tf.math.argmax(outputs.logits, axis=1).numpy()
|
21 |
-
|
22 |
-
# Generate report
|
23 |
-
report = classification_report(true_labels, preds, target_names=["negative", "neutral", "positive"])
|
24 |
-
return report
|
25 |
-
except Exception as e:
|
26 |
-
return f"⚠️ Error occurred: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|