Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
3 |
import tensorflow as tf
|
4 |
|
@@ -20,67 +20,5 @@ demo = gr.Interface(fn=classify_sentiment,
|
|
20 |
description="Multilingual BERT-based Sentiment Analysis")
|
21 |
|
22 |
demo.launch()
|
23 |
-
'''
|
24 |
-
'''
|
25 |
-
import gradio as gr
|
26 |
-
from transformers import TFBertForSequenceClassification, BertTokenizer
|
27 |
-
import tensorflow as tf
|
28 |
-
|
29 |
-
# Load model and tokenizer from your HF model repo
|
30 |
-
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
31 |
-
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
32 |
-
|
33 |
-
def classify_sentiment(text):
|
34 |
-
text = text.lower().strip() # Normalize input
|
35 |
-
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
36 |
-
predictions = model(inputs).logits
|
37 |
-
label = tf.argmax(predictions, axis=1).numpy()[0]
|
38 |
-
labels = model.config.id2label # Use mapping from config.json
|
39 |
-
print(f"Text: {text} | Prediction: {label} | Logits: {predictions.numpy()}") # Debug
|
40 |
-
return labels[str(label)] # Convert to string key
|
41 |
-
|
42 |
-
demo = gr.Interface(fn=classify_sentiment,
|
43 |
-
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
44 |
-
outputs="text",
|
45 |
-
title="Tweet Sentiment Classifier",
|
46 |
-
description="Multilingual BERT-based Sentiment Analysis")
|
47 |
-
|
48 |
-
demo.launch()
|
49 |
-
'''
|
50 |
-
import gradio as gr
|
51 |
-
from transformers import TFBertForSequenceClassification, BertTokenizer
|
52 |
-
import tensorflow as tf
|
53 |
|
54 |
-
# Load model and tokenizer from Hugging Face Hub
|
55 |
-
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
56 |
-
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
57 |
-
|
58 |
-
def classify_sentiment(text):
|
59 |
-
text = text.lower().strip()
|
60 |
-
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
61 |
-
outputs = model(inputs, training=False)
|
62 |
-
logits = outputs.logits
|
63 |
-
label_id = int(tf.argmax(logits, axis=1).numpy()[0])
|
64 |
-
|
65 |
-
# Handle label mapping correctly
|
66 |
-
raw_labels = model.config.id2label
|
67 |
-
if isinstance(list(raw_labels.keys())[0], str):
|
68 |
-
label = raw_labels.get(str(label_id), "Unknown")
|
69 |
-
else:
|
70 |
-
label = raw_labels.get(label_id, "Unknown")
|
71 |
-
|
72 |
-
print(f"Text: {text} | Label ID: {label_id} | Label: {label} | Logits: {logits.numpy()}")
|
73 |
-
return label
|
74 |
-
|
75 |
-
# Define the Gradio interface
|
76 |
-
demo = gr.Interface(
|
77 |
-
fn=classify_sentiment,
|
78 |
-
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
79 |
-
outputs="text",
|
80 |
-
title="Tweet Sentiment Classifier",
|
81 |
-
description="Multilingual BERT-based Sentiment Analysis"
|
82 |
-
)
|
83 |
-
|
84 |
-
# Launch the app
|
85 |
-
demo.launch()
|
86 |
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
3 |
import tensorflow as tf
|
4 |
|
|
|
20 |
description="Multilingual BERT-based Sentiment Analysis")
|
21 |
|
22 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|