Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import gradio as gr
|
2 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
3 |
import tensorflow as tf
|
4 |
|
@@ -20,3 +20,28 @@ demo = gr.Interface(fn=classify_sentiment,
|
|
20 |
description="Multilingual BERT-based Sentiment Analysis")
|
21 |
|
22 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''import gradio as gr
|
2 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
3 |
import tensorflow as tf
|
4 |
|
|
|
20 |
description="Multilingual BERT-based Sentiment Analysis")
|
21 |
|
22 |
demo.launch()
|
23 |
+
'''
|
24 |
+
import gradio as gr
|
25 |
+
from transformers import TFBertForSequenceClassification, BertTokenizer
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
# Load model and tokenizer from your HF model repo
|
29 |
+
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
30 |
+
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
31 |
+
|
32 |
+
def classify_sentiment(text):
|
33 |
+
text = text.lower().strip() # Normalize input
|
34 |
+
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
35 |
+
predictions = model(inputs).logits
|
36 |
+
label = tf.argmax(predictions, axis=1).numpy()[0]
|
37 |
+
labels = model.config.id2label # Use mapping from config.json
|
38 |
+
print(f"Text: {text} | Prediction: {label} | Logits: {predictions.numpy()}") # Debug
|
39 |
+
return labels[str(label)] # Convert to string key
|
40 |
+
|
41 |
+
demo = gr.Interface(fn=classify_sentiment,
|
42 |
+
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
43 |
+
outputs="text",
|
44 |
+
title="Tweet Sentiment Classifier",
|
45 |
+
description="Multilingual BERT-based Sentiment Analysis")
|
46 |
+
|
47 |
+
demo.launch()
|