|
import gradio as gr |
|
from transformers import TFBertForSequenceClassification, BertTokenizer |
|
import tensorflow as tf |
|
|
|
|
|
model = TFBertForSequenceClassification.from_pretrained("Shrish191/sentiment-classifier") |
|
tokenizer = BertTokenizer.from_pretrained("Shrish191/sentiment-classifier") |
|
|
|
def classify_sentiment(text): |
|
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True) |
|
predictions = model(inputs).logits |
|
label = tf.argmax(predictions, axis=1).numpy()[0] |
|
labels = {0: "Negative", 1: "Neutral", 2: "Positive"} |
|
return labels[label] |
|
|
|
demo = gr.Interface(fn=classify_sentiment, |
|
inputs=gr.Textbox(placeholder="Enter a tweet..."), |
|
outputs="text", |
|
title="Tweet Sentiment Classifier", |
|
description="Multilingual BERT-based Sentiment Analysis") |
|
|
|
demo.launch() |
|
|