|
import gradio as gr |
|
from transformers import TFBertForSequenceClassification, BertTokenizer |
|
import tensorflow as tf |
|
import praw |
|
import os |
|
import pytesseract |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
import re |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
from scipy.special import softmax |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
def get_classification_report(): |
|
from sklearn.metrics import classification_report |
|
import pandas as pd |
|
|
|
|
|
df = pd.read_csv("test.csv") |
|
texts = df["text"].tolist() |
|
true_labels = df["label"].tolist() |
|
|
|
|
|
|
|
|
|
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" |
|
tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) |
|
|
|
|
|
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf") |
|
outputs = model(inputs) |
|
predictions = tf.math.argmax(outputs.logits, axis=1).numpy() |
|
|
|
|
|
report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"]) |
|
return report |
|
|