shresht8's picture
update app - extract likes/dislikes
50fe41a verified
raw
history blame contribute delete
12.1 kB
import gradio as gr
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.express as px
import plotly.graph_objects as go
from collections import defaultdict
from openai import OpenAI
from pydantic import BaseModel, Field, field_validator, ValidationInfo
from typing import Optional, Dict, Any, List, Annotated
from instructor import patch
import instructor
from prompts import sentiments_prompt
# Load model and tokenizer globally for efficiency
model_name = "tabularisai/multilingual-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Define sentiment weights for score calculation
SENTIMENT_WEIGHTS = {
0: 0.0, # Very Negative
1: 0.25, # Negative
2: 0.5, # Neutral
3: 0.75, # Positive
4: 1.0 # Very Positive
}
class ExtractProductSentiment(BaseModel):
"""Extracts what people like and dislike about a product based on product reviews and sentiment scores (0-100)"""
product_likes: List[str] = Field(..., description="What people like about the product. List of 3 sentences AT MOST. Must be aggregated in the order of importance.")
product_dislikes: List[str] = Field(..., description="What people dislike about the product. List of 3 sentences AT MOST. Must be aggregated in the order of importance.")
@field_validator("product_likes", "product_dislikes")
def validate_product_likes_and_dislikes(cls, v, info: ValidationInfo):
if not v:
raise ValueError(f"At least one {info.field_name} must be provided. If nothing to say, please enter 'None'")
if len(v) > 3:
raise ValueError(
f"{info.field_name} contains {len(v)} points. Please aggregate the points to a maximum of 3 key points "
"in order of importance. Combine similar points together."
)
return v
def predict_sentiment_with_scores(texts):
"""
Predict sentiment for a list of texts and return both class labels and sentiment scores
"""
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get predicted classes
sentiment_map = {
0: "Very Negative",
1: "Negative",
2: "Neutral",
3: "Positive",
4: "Very Positive"
}
predicted_classes = [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
# Calculate sentiment scores (0-100)
sentiment_scores = []
for prob in probabilities:
# Weighted sum of probabilities
score = sum(prob[i].item() * SENTIMENT_WEIGHTS[i] for i in range(len(prob)))
# Scale to 0-100
sentiment_scores.append(round(score * 100, 2))
return predicted_classes, sentiment_scores
#patch() # Patch OpenAI client to support response models
def get_product_sentiment(client, reviews: List[str], scores: List[float]) -> ExtractProductSentiment:
"""Extract product likes and dislikes using OpenAI"""
# Combine reviews and scores for context
review_context = "\n".join([f"Review (Score: {score}): {review}"
for review, score in zip(reviews, scores)])
#client = instructor.patch(OpenAI(api_key=openai_api_key))
prompt = sentiments_prompt.format(review_context=review_context)
response = client.chat.completions.create(
model="gpt-4o",
response_model=ExtractProductSentiment,
messages=[
{"role": "system", "content": "You are a helpful product analyst."},
{"role": "user", "content": prompt}
],
max_retries=3
)
return response
def create_comparison_charts(sentiment_results, avg_sentiment_scores):
"""
Create comparison charts for sentiment analysis across products
"""
# Create summary DataFrame
summary_data = []
for product in sentiment_results.keys():
counts = sentiment_results[product]
total = counts.sum()
row = {
'Product': product,
'Average Sentiment Score': avg_sentiment_scores[product],
'Total Reviews': total,
'Very Positive %': round((counts.get('Very Positive', 0) / total) * 100, 2),
'Positive %': round((counts.get('Positive', 0) / total) * 100, 2),
'Neutral %': round((counts.get('Neutral', 0) / total) * 100, 2),
'Negative %': round((counts.get('Negative', 0) / total) * 100, 2),
'Very Negative %': round((counts.get('Very Negative', 0) / total) * 100, 2)
}
summary_data.append(row)
summary_df = pd.DataFrame(summary_data)
# Score comparison chart
score_comparison_fig = px.bar(
summary_df,
x='Product',
y='Average Sentiment Score',
title='Average Sentiment Scores by Product',
labels={'Average Sentiment Score': 'Score (0-100)'}
)
# Distribution chart
distribution_data = []
for product in sentiment_results.keys():
counts = sentiment_results[product]
# Aggregate positive and negative sentiments
aggregated_counts = {
'Positive': counts.get('Very Positive', 0) + counts.get('Positive', 0),
'Neutral': counts.get('Neutral', 0),
'Negative': counts.get('Very Negative', 0) + counts.get('Negative', 0)
}
for sentiment, count in aggregated_counts.items():
distribution_data.append({
'Product': product,
'Sentiment': sentiment,
'Count': count
})
distribution_df = pd.DataFrame(distribution_data)
distribution_fig = px.bar(
distribution_df,
x='Product',
y='Count',
color='Sentiment',
title='Sentiment Distribution by Product',
barmode='group',
color_discrete_map={
'Positive': '#2ECC71', # Green
'Neutral': '#F1C40F', # Yellow
'Negative': '#E74C3C' # Red
}
)
# Ratio chart (percentage stacked bar)
ratio_fig = px.bar(
distribution_df,
x='Product',
y='Count',
color='Sentiment',
title='Sentiment Distribution Ratio by Product',
barmode='relative'
)
return score_comparison_fig, distribution_fig, ratio_fig, summary_df
def process_single_sheet(df, product_name, openai_client):
"""
Process a single dataframe and return sentiment analysis results
"""
if 'Reviews' not in df.columns:
raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")
reviews = df['Reviews'].fillna("")
sentiments, scores = predict_sentiment_with_scores(reviews.tolist())
df['Sentiment'] = sentiments
df['Sentiment_Score'] = scores
# Extract product likes and dislikes
try:
product_sentiment = get_product_sentiment(openai_client, reviews.tolist(), scores)
# Initialize empty columns
df['Likes'] = ""
df['Dislikes'] = ""
# Get the likes and dislikes lists
likes_list = product_sentiment.product_likes
dislikes_list = product_sentiment.product_dislikes
# Only populate the first N rows where N is the length of the likes/dislikes lists
for idx, (like, dislike) in enumerate(zip(likes_list, dislikes_list)):
df.loc[idx, 'Likes'] = like
df.loc[idx, 'Dislikes'] = dislike
except Exception as e:
print(f"Error extracting likes/dislikes for {product_name}: {str(e)}")
df['Likes'] = ""
df['Dislikes'] = ""
# Calculate sentiment distribution
sentiment_counts = pd.Series(sentiments).value_counts()
avg_sentiment_score = round(sum(scores) / len(scores), 2)
return df, sentiment_counts, avg_sentiment_score
def process_file(file_obj, api_key):
"""
Process the input file and add sentiment analysis results
"""
try:
if not api_key:
raise ValueError("OpenAI API key is required")
client = instructor.patch(OpenAI(api_key=api_key))
file_path = file_obj.name
sentiment_results = defaultdict(pd.Series)
avg_sentiment_scores = {}
all_processed_dfs = {}
if file_path.endswith('.csv'):
df = pd.read_csv(file_path)
product_name = "Product" # Default name for CSV
processed_df, sentiment_counts, avg_score = process_single_sheet(df, product_name, client)
all_processed_dfs[product_name] = processed_df
sentiment_results[product_name] = sentiment_counts
avg_sentiment_scores[product_name] = avg_score
elif file_path.endswith(('.xlsx', '.xls')):
excel_file = pd.ExcelFile(file_path)
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(file_path, sheet_name=sheet_name)
processed_df, sentiment_counts, avg_score = process_single_sheet(df, sheet_name, client)
all_processed_dfs[sheet_name] = processed_df
sentiment_results[sheet_name] = sentiment_counts
avg_sentiment_scores[sheet_name] = avg_score
else:
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
# Create visualizations with new sentiment score chart
score_comparison_fig, distribution_fig, ratio_fig, summary_df = create_comparison_charts(
sentiment_results, avg_sentiment_scores
)
# Save results
output_path = "sentiment_analysis_results.xlsx"
with pd.ExcelWriter(output_path) as writer:
for sheet_name, df in all_processed_dfs.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
if isinstance(summary_df, pd.DataFrame): # Safety check
summary_df.to_excel(writer, sheet_name='Summary', index=False)
return score_comparison_fig, distribution_fig, summary_df, output_path
except Exception as e:
raise gr.Error(str(e))
# Update the Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# Product Review Sentiment Analysis")
gr.Markdown("""
### Quick Guide
1. **Excel File (Multiple Products)**:
- Create separate sheets for each product
- Name sheets with product/company names
- Include "Reviews" column in each sheet
2. **CSV File (Single Product)**:
- Include "Reviews" column
Upload your file and click Analyze to get started.
""")
with gr.Row():
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API key",
type="password"
)
with gr.Row():
file_input = gr.File(
label="Upload File (CSV or Excel)",
file_types=[".csv", ".xlsx", ".xls"]
)
with gr.Row():
analyze_btn = gr.Button("Analyze Sentiments")
with gr.Row():
sentiment_score_plot = gr.Plot(label="Weighted Sentiment Scores")
with gr.Row():
distribution_plot = gr.Plot(label="Sentiment Distribution")
with gr.Row():
summary_table = gr.Dataframe(label="Summary Metrics")
with gr.Row():
output_file = gr.File(label="Download Full Report")
analyze_btn.click(
fn=process_file,
inputs=[file_input, api_key_input],
outputs=[sentiment_score_plot, distribution_plot, summary_table, output_file]
)
# Launch interface
interface.launch()