Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from .common_modules import * | |
from .modeling_utils import ConfigMixin, ModelMixin, register_to_config | |
from .misc import * | |
import math | |
class Updateable: | |
def do_update_step( | |
self, epoch: int, global_step: int, on_load_weights: bool = False | |
): | |
for attr in self.__dir__(): | |
if attr.startswith("_"): | |
continue | |
try: | |
module = getattr(self, attr) | |
except: | |
continue # ignore attributes like property, which can't be retrived using getattr? | |
if isinstance(module, Updateable): | |
module.do_update_step( | |
epoch, global_step, on_load_weights=on_load_weights | |
) | |
self.update_step(epoch, global_step, on_load_weights=on_load_weights) | |
def do_update_step_end(self, epoch: int, global_step: int): | |
for attr in self.__dir__(): | |
if attr.startswith("_"): | |
continue | |
try: | |
module = getattr(self, attr) | |
except: | |
continue # ignore attributes like property, which can't be retrived using getattr? | |
if isinstance(module, Updateable): | |
module.do_update_step_end(epoch, global_step) | |
self.update_step_end(epoch, global_step) | |
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): | |
# override this method to implement custom update logic | |
# if on_load_weights is True, you should be careful doing things related to model evaluations, | |
# as the models and tensors are not guarenteed to be on the same device | |
pass | |
def update_step_end(self, epoch: int, global_step: int): | |
pass | |
class VQGANEncoder(ModelMixin, ConfigMixin): | |
class Config: | |
ch: int = 128 | |
ch_mult: List[int] = field(default_factory=lambda: [1, 2, 2, 4, 4]) | |
num_res_blocks: List[int] = field(default_factory=lambda: [4, 3, 4, 3, 4]) | |
attn_resolutions: List[int] = field(default_factory=lambda: [5]) | |
dropout: float = 0.0 | |
in_ch: int = 3 | |
out_ch: int = 3 | |
resolution: int = 256 | |
z_channels: int = 13 | |
double_z: bool = False | |
def __init__(self, | |
ch: int = 128, | |
ch_mult: List[int] = [1, 2, 2, 4, 4], | |
num_res_blocks: List[int] = [4, 3, 4, 3, 4], | |
attn_resolutions: List[int] = [5], | |
dropout: float = 0.0, | |
in_ch: int = 3, | |
out_ch: int = 3, | |
resolution: int = 256, | |
z_channels: int = 13, | |
double_z: bool = False): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_ch = in_ch | |
# downsampling | |
self.conv_in = torch.nn.Conv2d( | |
self.in_ch, self.ch, kernel_size=3, stride=1, padding=1 | |
) | |
curr_res = self.resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = self.ch * in_ch_mult[i_level] | |
block_out = self.ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks[i_level]): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock(block_in)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample(block_in, True) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, | |
2 * z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) | |
# for param in self.parameters(): | |
# broadcast(param, src=0) | |
def forward(self, x): | |
# timestep embedding | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks[i_level]): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
h = self.quant_conv(h) | |
return h | |
class LFQuantizer(nn.Module): | |
def __init__(self, num_codebook_entry: int = -1, | |
codebook_dim: int = 13, | |
beta: float = 0.25, | |
entropy_multiplier: float = 0.1, | |
commit_loss_multiplier: float = 0.1, ): | |
super().__init__() | |
self.codebook_size = 2 ** codebook_dim | |
print( | |
f"Look-up free quantizer with codebook size: {self.codebook_size}" | |
) | |
self.e_dim = codebook_dim | |
self.beta = beta | |
indices = torch.arange(self.codebook_size) | |
binary = ( | |
indices.unsqueeze(1) | |
>> torch.arange(codebook_dim - 1, -1, -1, dtype=torch.long) | |
) & 1 | |
embedding = binary.float() * 2 - 1 | |
self.register_buffer("embedding", embedding) | |
self.register_buffer( | |
"power_vals", 2 ** torch.arange(codebook_dim - 1, -1, -1) | |
) | |
self.commit_loss_multiplier = commit_loss_multiplier | |
self.entropy_multiplier = entropy_multiplier | |
def get_indices(self, z_q): | |
return ( | |
(self.power_vals.reshape(1, -1, 1, 1) * (z_q > 0).float()) | |
.sum(1, keepdim=True) | |
.long() | |
) | |
def get_codebook_entry(self, indices, shape=None): | |
if shape is None: | |
h, w = int(math.sqrt(indices.shape[-1])), int(math.sqrt(indices.shape[-1])) | |
else: | |
h, w = shape | |
b, _ = indices.shape | |
indices = indices.reshape(-1) | |
z_q = self.embedding[indices] | |
z_q = z_q.view(b, h, w, -1) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q | |
def forward(self, z, get_code=False): | |
""" | |
Inputs the output of the encoder network z and maps it to a discrete | |
one-hot vector that is the index of the closest embedding vector e_j | |
z (continuous) -> z_q (discrete) | |
z.shape = (batch, channel, height, width) | |
quantization pipeline: | |
1. get encoder input (B,C,H,W) | |
2. flatten input to (B*H*W,C) | |
""" | |
if get_code: | |
return self.get_codebook_entry(z) | |
# reshape z -> (batch, height, width, channel) and flatten | |
z = z.permute(0, 2, 3, 1).contiguous() | |
z_flattened = z.view(-1, self.e_dim) | |
ge_zero = (z_flattened > 0).float() | |
ones = torch.ones_like(z_flattened) | |
z_q = ones * ge_zero + -ones * (1 - ge_zero) | |
# preserve gradients | |
z_q = z_flattened + (z_q - z_flattened).detach() | |
# compute entropy loss | |
CatDist = torch.distributions.categorical.Categorical | |
logit = torch.stack( | |
[ | |
-(z_flattened - torch.ones_like(z_q)).pow(2), | |
-(z_flattened - torch.ones_like(z_q) * -1).pow(2), | |
], | |
dim=-1, | |
) | |
cat_dist = CatDist(logits=logit) | |
entropy = cat_dist.entropy().mean() | |
mean_prob = cat_dist.probs.mean(0) | |
mean_entropy = CatDist(probs=mean_prob).entropy().mean() | |
# compute loss for embedding | |
commit_loss = torch.mean( | |
(z_q.detach() - z_flattened) ** 2 | |
) + self.beta * torch.mean((z_q - z_flattened.detach()) ** 2) | |
# reshape back to match original input shape | |
z_q = z_q.view(z.shape) | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return { | |
"z": z_q, | |
"quantizer_loss": commit_loss * self.commit_loss_multiplier, | |
"entropy_loss": (entropy - mean_entropy) * self.entropy_multiplier, | |
"indices": self.get_indices(z_q), | |
} | |
class VQGANDecoder(ModelMixin, ConfigMixin): | |
def __init__(self, ch: int = 128, | |
ch_mult: List[int] = [1, 1, 2, 2, 4], | |
num_res_blocks: List[int] = [4, 4, 3, 4, 3], | |
attn_resolutions: List[int] = [5], | |
dropout: float = 0.0, | |
in_ch: int = 3, | |
out_ch: int = 3, | |
resolution: int = 256, | |
z_channels: int = 13, | |
double_z: bool = False): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_ch = in_ch | |
self.give_pre_end = False | |
self.z_channels = z_channels | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,) + tuple(ch_mult) | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = self.resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
print( | |
"Working with z of shape {} = {} dimensions.".format( | |
self.z_shape, np.prod(self.z_shape) | |
) | |
) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d( | |
z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks[i_level]): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock(block_in)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, True) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
) | |
self.post_quant_conv = torch.nn.Conv2d( | |
z_channels, z_channels, 1 | |
) | |
def forward(self, z): | |
# assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
output = dict() | |
z = self.post_quant_conv(z) | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks[i_level]): | |
h = self.up[i_level].block[i_block](h, temb) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
output["output"] = h | |
if self.give_pre_end: | |
return output | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
output["output"] = h | |
return output | |
class MAGVITv2(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
): | |
super().__init__() | |
self.encoder = VQGANEncoder() | |
self.decoder = VQGANDecoder() | |
self.quantize = LFQuantizer() | |
def forward(self, pixel_values, return_loss=False): | |
pass | |
def encode(self, pixel_values, return_loss=False): | |
hidden_states = self.encoder(pixel_values) | |
quantized_states = self.quantize(hidden_states)['z'] | |
codebook_indices = self.quantize.get_indices(quantized_states).reshape(pixel_values.shape[0], -1) | |
output = (quantized_states, codebook_indices) | |
return output | |
def get_code(self, pixel_values): | |
hidden_states = self.encoder(pixel_values) | |
codebook_indices = self.quantize.get_indices(self.quantize(hidden_states)['z']).reshape(pixel_values.shape[0], -1) | |
return codebook_indices | |
def decode_code(self, codebook_indices, shape=None): | |
z_q = self.quantize.get_codebook_entry(codebook_indices, shape=shape) | |
reconstructed_pixel_values = self.decoder(z_q)["output"] | |
return reconstructed_pixel_values | |
if __name__ == '__main__': | |
encoder = VQGANEncoder() | |
import ipdb | |
ipdb.set_trace() | |
print() |