Spaces:
Runtime error
Runtime error
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
from PIL import Image | |
from tqdm import tqdm | |
import numpy as np | |
import torch | |
import wandb | |
from models import Showo, MAGVITv2 | |
from prompting_utils import UniversalPrompting, create_attention_mask_for_mmu, create_attention_mask_for_mmu_vit | |
from training.utils import get_config, flatten_omega_conf, image_transform | |
from transformers import AutoTokenizer | |
from models.clip_encoder import CLIPVisionTower | |
from transformers import CLIPImageProcessor | |
# import.training.conversation as conversation_lib | |
from training import conversation as conversation_lib | |
conversation_lib.default_conversation = conversation_lib.conv_templates["phi1.5"] | |
SYSTEM_PROMPT = "A chat between a curious user and an artificial intelligence assistant. " \ | |
"The assistant gives helpful, detailed, and polite answers to the user's questions." | |
SYSTEM_PROMPT_LEN = 28 | |
def get_vq_model_class(model_type): | |
if model_type == "magvitv2": | |
return MAGVITv2 | |
else: | |
raise ValueError(f"model_type {model_type} not supported.") | |
if __name__ == '__main__': | |
config = get_config() | |
resume_wandb_run = config.wandb.resume | |
run_id = config.wandb.get("run_id", None) | |
if run_id is None: | |
resume_wandb_run = False | |
run_id = wandb.util.generate_id() | |
config.wandb.run_id = run_id | |
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} | |
wandb.init( | |
project="demo", | |
name=config.experiment.name + '_mmu', | |
config=wandb_config, | |
) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left") | |
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, | |
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"), | |
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob) | |
vq_model = get_vq_model_class(config.model.vq_model.type) | |
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) | |
vq_model.requires_grad_(False) | |
vq_model.eval() | |
vision_tower_name = "openai/clip-vit-large-patch14-336" | |
vision_tower = CLIPVisionTower(vision_tower_name).to(device) | |
clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name) | |
model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device) | |
model.eval() | |
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions | |
top_k = 1 # retain only the top_k most likely tokens, clamp others to have 0 probability | |
file_list = os.listdir(config.mmu_image_root) | |
responses = ['' for i in range(len(file_list))] | |
images = [] | |
config.question = config.question.split(' *** ') | |
for i, file_name in enumerate(tqdm(file_list)): | |
image_path = os.path.join(config.mmu_image_root, file_name) | |
image_ori = Image.open(image_path).convert("RGB") | |
image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device) | |
image = image.unsqueeze(0) | |
images.append(image) | |
pixel_values = clip_image_processor.preprocess(image_ori, return_tensors="pt")["pixel_values"][0] | |
image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer) | |
batch_size = 1 | |
for question in config.question: | |
if config.model.showo.w_clip_vit: | |
conv = conversation_lib.default_conversation.copy() | |
conv.append_message(conv.roles[0], question) | |
conv.append_message(conv.roles[1], None) | |
prompt_question = conv.get_prompt() | |
question_input = [] | |
question_input.append(prompt_question.strip()) | |
input_ids_system = [uni_prompting.text_tokenizer(SYSTEM_PROMPT, return_tensors="pt", padding="longest").input_ids | |
for _ in range(batch_size)] | |
input_ids_system = torch.stack(input_ids_system, dim=0) | |
assert input_ids_system.shape[-1] == 28 | |
input_ids_system = input_ids_system.to(device) | |
input_ids_system = input_ids_system[0] | |
input_ids = [uni_prompting.text_tokenizer(prompt, return_tensors="pt", padding="longest").input_ids | |
for prompt in question_input] | |
input_ids = torch.stack(input_ids) | |
input_ids = torch.nn.utils.rnn.pad_sequence( | |
input_ids, batch_first=True, padding_value=uni_prompting.text_tokenizer.pad_token_id | |
) | |
input_ids = torch.tensor(input_ids).to(device).squeeze(0) | |
# import pdb; pdb.set_trace() | |
input_ids_llava = torch.cat([ | |
(torch.ones(input_ids.shape[0], 1) *uni_prompting.sptids_dict['<|mmu|>']).to(device), | |
input_ids_system, | |
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device), | |
# place your img embedding here | |
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device), | |
input_ids, | |
], dim=1).long() | |
images_embeddings = vision_tower(pixel_values[None]) | |
images_embeddings = model.mm_projector(images_embeddings) | |
text_embeddings = model.showo.model.embed_tokens(input_ids_llava) | |
# Full input seq | |
part1 = text_embeddings[:, :2 + SYSTEM_PROMPT_LEN, :] | |
part2 = text_embeddings[:, 2 + SYSTEM_PROMPT_LEN:, :] | |
input_embeddings = torch.cat((part1, images_embeddings, part2), dim=1) | |
attention_mask_llava = create_attention_mask_for_mmu_vit(input_embeddings, | |
system_prompt_len=SYSTEM_PROMPT_LEN) | |
cont_toks_list = model.mmu_generate(input_embeddings=input_embeddings, | |
attention_mask=attention_mask_llava[0].unsqueeze(0), | |
max_new_tokens=100, | |
top_k=top_k, | |
eot_token=uni_prompting.sptids_dict['<|eot|>'] | |
) | |
else: | |
input_ids = uni_prompting.text_tokenizer(['USER: \n' + question + ' ASSISTANT:'])[ | |
'input_ids'] | |
input_ids = torch.tensor(input_ids).to(device) | |
input_ids = torch.cat([ | |
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device), | |
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device), | |
image_tokens, | |
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device), | |
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device), | |
input_ids | |
], dim=1).long() | |
attention_mask = create_attention_mask_for_mmu(input_ids.to(device), | |
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>'])) | |
cont_toks_list = model.mmu_generate(input_ids, attention_mask=attention_mask, | |
max_new_tokens=100, top_k=top_k, | |
eot_token=uni_prompting.sptids_dict['<|eot|>']) | |
cont_toks_list = torch.stack(cont_toks_list).squeeze()[None] | |
text = uni_prompting.text_tokenizer.batch_decode(cont_toks_list, skip_special_tokens=True) | |
print(text) | |
responses[i] += f'User: ' + question + f'\n Answer : ' + text[0] + '\n' | |
images = torch.cat(images, dim=0) | |
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) | |
images *= 255.0 | |
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) | |
pil_images = [Image.fromarray(image) for image in images] | |
wandb_images = [wandb.Image(image, caption=responses[i]) for i, image in enumerate(pil_images)] | |
wandb.log({"multimodal understanding": wandb_images}, step=0) | |