File size: 29,678 Bytes
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e04b16
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fad823
 
 
 
 
8741abe
 
 
 
 
544ad26
 
 
 
 
 
 
 
 
 
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fad823
 
8741abe
2fad823
 
 
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fad823
 
 
 
 
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
091f2fc
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e04b16
 
 
 
 
 
 
 
 
 
 
 
 
8741abe
 
 
 
 
 
 
 
091f2fc
8741abe
 
 
 
544ad26
 
8741abe
544ad26
 
 
 
 
 
 
 
 
 
 
 
8741abe
544ad26
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
091f2fc
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
091f2fc
 
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import numpy as np
import gradio as gr
import spaces
import torch
import torch.nn.functional as F
from PIL import Image
from omegaconf import OmegaConf
from transformers import AutoTokenizer

from prompting_utils import UniversalPrompting, create_attention_mask_predict_next, create_attention_mask_for_mmu
from training_utils import image_transform
from models import Showo, MAGVITv2, get_mask_chedule

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

config = OmegaConf.load("configs/showo_demo_512x512.yaml")
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left")

uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
                                   special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>",
                                                   "<|t2v|>", "<|v2v|>", "<|lvg|>"),
                                   ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob)

vq_model = MAGVITv2()
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()

model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device)
model.eval()
mask_token_id = model.config.mask_token_id


@spaces.GPU
def text_to_image_generation(input_text, guidance_scale=1.75, generation_timesteps=18):
    prompts = [input_text]
    config.training.batch_size = config.batch_size = 1
    config.training.guidance_scale = config.guidance_scale = guidance_scale
    config.training.generation_timesteps = config.generation_timesteps = generation_timesteps

    image_tokens = torch.ones((len(prompts), config.model.showo.num_vq_tokens),
                              dtype=torch.long, device=device) * mask_token_id

    input_ids, _ = uni_prompting((prompts, image_tokens), 't2i_gen')

    if config.training.guidance_scale > 0:
        uncond_input_ids, _ = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen')
        attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0),
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
    else:
        attention_mask = create_attention_mask_predict_next(input_ids,
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
        uncond_input_ids = None

    if config.get("mask_schedule", None) is not None:
        schedule = config.mask_schedule.schedule
        args = config.mask_schedule.get("params", {})
        mask_schedule = get_mask_chedule(schedule, **args)
    else:
        mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine"))

    with torch.no_grad():
        gen_token_ids = model.t2i_generate(
            input_ids=input_ids,
            uncond_input_ids=uncond_input_ids,
            attention_mask=attention_mask,
            guidance_scale=config.training.guidance_scale,
            temperature=config.training.get("generation_temperature", 1.0),
            timesteps=config.training.generation_timesteps,
            noise_schedule=mask_schedule,
            noise_type=config.training.get("noise_type", "mask"),
            seq_len=config.model.showo.num_vq_tokens,
            uni_prompting=uni_prompting,
            config=config,
        )

        gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0)
        images = vq_model.decode_code(gen_token_ids)
        images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
        images *= 255.0
        images = images.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)

    return images[0]


@spaces.GPU
def text_guided_inpainting(input_text, inpainting_image, inpainting_mask_input, guidance_scale=1.75, generation_timesteps=16):
    # pre-process inpainting mask
    alpha_channel = inpainting_mask_input["layers"][0][:, :, 3]
    mask = np.where(alpha_channel == 0, 0, 255).astype(np.uint8)

    if np.sum(mask) == 0:
        inpainting_mask = Image.fromarray(inpainting_mask_input['background']).convert('L')
    else:
        inpainting_mask = Image.fromarray(mask).convert('L')

    prompt = [input_text]

    config.training.batch_size = config.batch_size = 1
    config.training.guidance_scale = config.guidance_scale = guidance_scale
    config.training.generation_timesteps = config.generation_timesteps = generation_timesteps

    inpainting_image = image_transform(inpainting_image, resolution=config.dataset.params.resolution).to(device)
    inpainting_mask = image_transform(inpainting_mask, resolution=config.dataset.params.resolution, normalize=False)

    inpainting_image = inpainting_image.unsqueeze(0).repeat(config.training.batch_size, 1, 1, 1)

    inpainting_mask = inpainting_mask.unsqueeze(0).to(device)
    inpainting_mask = F.interpolate(inpainting_mask, size=config.dataset.params.resolution // 16, mode='bicubic')
    inpainting_mask = inpainting_mask.repeat(config.training.batch_size, 1, 1, 1)

    inpainting_mask[inpainting_mask < 0.5] = 0
    inpainting_mask[inpainting_mask >= 0.5] = 1

    inpainting_mask = inpainting_mask.reshape(config.training.batch_size, -1)
    inpainting_mask = inpainting_mask.to(torch.bool)

    inpainting_image_tokens = vq_model.get_code(inpainting_image) + len(uni_prompting.text_tokenizer)
    inpainting_image_tokens[inpainting_mask] = mask_token_id

    input_ids, _ = uni_prompting((prompt, inpainting_image_tokens), 't2i_gen')

    if config.training.guidance_scale > 0:
        uncond_input_ids, _ = uni_prompting(([''] * len(prompt), inpainting_image_tokens), 't2i_gen')
        attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0),
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
    else:
        attention_mask = create_attention_mask_predict_next(input_ids,
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
        uncond_input_ids = None

    if config.get("mask_schedule", None) is not None:
        schedule = config.mask_schedule.schedule
        args = config.mask_schedule.get("params", {})
        mask_schedule = get_mask_chedule(schedule, **args)
    else:
        mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine"))

    with torch.no_grad():
        gen_token_ids = model.t2i_generate(
            input_ids=input_ids,
            uncond_input_ids=uncond_input_ids,
            attention_mask=attention_mask,
            guidance_scale=config.training.guidance_scale,
            temperature=config.training.get("generation_temperature", 1.0),
            timesteps=config.training.generation_timesteps,
            noise_schedule=mask_schedule,
            noise_type=config.training.get("noise_type", "mask"),
            seq_len=config.model.showo.num_vq_tokens,
            uni_prompting=uni_prompting,
            config=config,
        )

        gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0)
        images = vq_model.decode_code(gen_token_ids)

        images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
        images *= 255.0
        images = images.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)

    return images[0]


@spaces.GPU
def text_guided_extrapolation(input_img, input_text, left_ext, right_ext, guidance_scale=1.75, generation_timesteps=16):
    config.offset = 0
    config.training.batch_size = config.batch_size = 1
    config.training.guidance_scale = config.guidance_scale = guidance_scale
    config.training.generation_timesteps = config.generation_timesteps = generation_timesteps

    extra_direction = ['right'] * int(right_ext) + ['left'] * int(left_ext)
    prompt = [input_text] * len(extra_direction)
    W = config.dataset.params.resolution // 16
    for id, (prt, direction) in enumerate(zip(prompt, extra_direction)):
        prt = [prt] * config.training.batch_size
        if id == 0:
            # extrapolation_image = Image.open(config.image_path).convert("RGB")
            extrapolation_image = input_img
            extrapolation_image = image_transform(extrapolation_image,
                                                  resolution=config.dataset.params.resolution).to(device)

            B, _, _ = extrapolation_image.shape
            extrapolation_image = extrapolation_image.unsqueeze(0)
            extrapolation_image_tokens = vq_model.get_code(extrapolation_image) + len(uni_prompting.text_tokenizer)
            extrapolation_image_tokens = extrapolation_image_tokens.reshape(1,
                                                                            config.dataset.params.resolution // 16,
                                                                            config.dataset.params.resolution // 16)
            extrapolation_image_tokens = extrapolation_image_tokens.repeat(config.training.batch_size, 1, 1)
        else:

            extrapolation_image_tokens = gen_token_ids + len(uni_prompting.text_tokenizer)

        image_left_part = extrapolation_image_tokens[:, :, :-(W // 2 - config.offset)] - len(
            uni_prompting.text_tokenizer)
        image_right_part = extrapolation_image_tokens[:, :, W // 2 - config.offset:] - len(uni_prompting.text_tokenizer)
        image_up_part = extrapolation_image_tokens[:, :-(W // 2 - config.offset), :] - len(uni_prompting.text_tokenizer)
        image_down_part = extrapolation_image_tokens[:, W // 2 - config.offset:, :] - len(uni_prompting.text_tokenizer)

        if direction in ['left', 'right']:
            extrapolation_mask = torch.zeros((config.training.batch_size,
                                              config.dataset.params.resolution // 16,
                                              config.dataset.params.resolution // 16 // 2 + config.offset),
                                             dtype=torch.int64, device=device) + mask_token_id
        else:
            extrapolation_mask = torch.zeros((config.training.batch_size,
                                              config.dataset.params.resolution // 16 // 2 + config.offset,
                                              config.dataset.params.resolution // 16),
                                             dtype=torch.int64, device=device) + mask_token_id

        if direction == 'left':
            extrapolation_image_tokens = torch.cat(
                [extrapolation_mask, extrapolation_image_tokens[:, :, :W // 2 - config.offset]], dim=-1)
        elif direction == 'right':
            extrapolation_image_tokens = torch.cat(
                [extrapolation_image_tokens[:, :, -(W // 2 - config.offset):], extrapolation_mask], dim=-1)
        elif direction == 'up':
            extrapolation_image_tokens = torch.cat(
                [extrapolation_mask, extrapolation_image_tokens[:, :W // 2 - config.offset, :]], dim=-2)
        else:
            extrapolation_image_tokens = torch.cat(
                [extrapolation_image_tokens[:, -(W // 2 - config.offset):, :], extrapolation_mask], dim=-2)

        extrapolation_image_tokens = extrapolation_image_tokens.reshape(config.training.batch_size, -1)

        input_ids, _ = uni_prompting((prt, extrapolation_image_tokens), 't2i_gen')

        if config.training.guidance_scale > 0:
            uncond_input_ids, _ = uni_prompting(([''] * len(prt), extrapolation_image_tokens), 't2i_gen')
            attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0),
                                                                pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                                soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                                eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                                rm_pad_in_image=True)
        else:
            attention_mask = create_attention_mask_predict_next(input_ids,
                                                                pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                                soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                                eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                                rm_pad_in_image=True)
            uncond_input_ids = None

        if config.get("mask_schedule", None) is not None:
            schedule = config.mask_schedule.schedule
            args = config.mask_schedule.get("params", {})
            mask_schedule = get_mask_chedule(schedule, **args)
        else:
            mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine"))

        with torch.no_grad():
            gen_token_ids = model.t2i_generate(
                input_ids=input_ids,
                uncond_input_ids=uncond_input_ids,
                attention_mask=attention_mask,
                guidance_scale=config.training.guidance_scale,
                temperature=config.training.get("generation_temperature", 1.0),
                timesteps=config.training.generation_timesteps,
                noise_schedule=mask_schedule,
                noise_type=config.training.get("noise_type", "mask"),
                seq_len=config.model.showo.num_vq_tokens,
                uni_prompting=uni_prompting,
                config=config,
            )

        gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0)
        gen_token_ids = gen_token_ids.reshape(config.training.batch_size,
                                              config.dataset.params.resolution // 16,
                                              config.dataset.params.resolution // 16)
        if direction == 'left':
            gen_token_ids = torch.cat([gen_token_ids, image_right_part], dim=-1)
        elif direction == 'right':
            gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-1)
        elif direction == 'up':
            gen_token_ids = torch.cat([gen_token_ids, image_down_part], dim=-2)
        else:
            gen_token_ids = torch.cat([image_left_part, gen_token_ids], dim=-2)

    _, h, w = gen_token_ids.shape
    gen_token_ids = gen_token_ids.reshape(config.training.batch_size, -1)

    with torch.no_grad():
        images = vq_model.decode_code(gen_token_ids, shape=(h, w))
        images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
        images *= 255.0
        images = images.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)

    return images[0]


@spaces.GPU
def multimodal_understanding(input_img, input_text, chat_history):
    top_k = 1  # retain only the top_k most likely tokens, clamp others to have 0 probability

    image_ori = input_img
    image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device)
    image = image.unsqueeze(0)
    image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer)

    question = input_text
    input_ids = uni_prompting.text_tokenizer(['USER: \n' + question + ' ASSISTANT:'])[
        'input_ids']
    input_ids = torch.tensor(input_ids).to(device)

    input_ids = torch.cat([
        (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device),
        (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
        image_tokens,
        (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
        (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
        input_ids
    ], dim=1).long()

    attention_mask = create_attention_mask_for_mmu(input_ids.to(device),
                                                   eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']))

    cont_toks_list = model.mmu_generate(input_ids, attention_mask=attention_mask,
                                        max_new_tokens=100, top_k=top_k,
                                        eot_token=uni_prompting.sptids_dict['<|eot|>'])

    cont_toks_list = torch.stack(cont_toks_list).squeeze()[None]

    output_text = uni_prompting.text_tokenizer.batch_decode(cont_toks_list, skip_special_tokens=True)

    output_text = output_text[0].strip()

    chat_history.append((input_text, output_text))

    return "", chat_history


with gr.Blocks() as demo:
    gr.HTML("""
            <h1 class="display-2 fw-bold title">
              <a style="color: #70a8dc;">S</a><a style="color: #6fb051;">h</a><a style="color: #e06766;">o</a><a style="color: #f7b26b;">w</a>-o
            </h1>
            <p>This is the official Gradio demo for the Show-o model, a unified model that can do multimodal understanding and generation.</p>

            <strong>Paper:</strong> <a href="https://arxiv.org/abs/2408.12528" target="_blank">Show-o: One Single Transformer To Unify Multimodal Understanding and Generation </a>
            <br/>
            <strong>Project Website:</strong> <a href="https://showlab.github.io/Show-o/" target="_blank">Show-o Website</a>
            <br/>
            <strong>Code and Models:</strong> <a href="https://github.com/showlab/Show-o" target="_blank">GitHub</a>
            <br/>
            <br/>
        """)

    banner_1 = gr.Markdown(value="# Text-to-image Generation")
    with gr.Row():
        with gr.Column():
            text_prompt_t2i = gr.Textbox(
                label="Text prompt",
                lines=2,
                placeholder="Input the text prompt here for image generation."
            )
            guidance_scale_t2i = gr.Slider(
                label="guidance scale",
                minimum=0,
                maximum=5,
                step=0.05,
                value=1.75
            )
            generation_timesteps_t2i = gr.Slider(
                label="timesteps",
                minimum=1,
                maximum=30,
                step=1,
                value=18
            )
        generated_img_t2i = gr.Image(
            label="Output image"
        )
    examples_t2i = gr.Examples(
        label="Text to image generation examples",
        examples=[
            "A 3D render of a futuristic car made of glass, driving through a city of mirrors.",
            # "A photo-realistic image of a garden with pink and blue flowers. There are pink poppies in the foreground, with their petals gently curved. The background features purple cosmos flowers. The flowers have water droplets on their petals, which glisten in the natural light. The green leaves are lush and healthy. The background is blurred, with a few trees and buildings visible. The overall image has a high resolution and is hyper-realistic, as if taken by a skilled photographer.",
            "an egg and a bird made of wheat bread.",
            "An armchair in the shape of an avocado",
            # "The image features a stylized stained glass illustration of a hummingbird with vibrant colors, set against a backdrop of swirling patterns and a large sun. The composition includes floral elements and intricate details, creating a vivid and dynamic scene that emphasizes the beauty of the bird. The colors range from greens to reds, enhancing the lively and artistic aesthetic of the piece.",
            # "A 3D render of a surreal explosion scene on the shore of a beautiful white sand beach with crystal clear water. The explosion has a spatter of oil paint with pastel colors and a thick consistency. The explosion is in a quiet and serene environment. A beautiful Japanese woman with a dress compacted to the sea is seen. There are butterfly petals and flowers with an ethereal glow and bioluminescence. There are pink and blue roses, and the overall image has a surreal and dreamlike quality.",
            # "A 3D render of a cute, round rice ball character with big, sparkling eyes that convey curiosity and joy. Its body is a soft, fluffy white with a slight sheen, resembling freshly cooked rice. Mochi has small, rosy cheeks that give it a warm, friendly expression. A tiny smile brightens its face, and it often sports a colorful ribbon tied around its \"waist,\" adding a playful touch. Mochi's arms and feet are cartoonishly short, allowing it to bounce adorably around its surroundings.",
            # "A hyper-realistic close-up photograph of a woman's face, focusing on the left side. The image is highly detailed and realistic, showing voluminous glossy lips slightly parted, a well-defined nose, and open eyes with long eyelashes that cast shadows on the skin. The eye color is crystal clear almond green. The skin texture is crisp, with incredible detail of natural, lush skin and pores and freckles, with subtle highlights and shadows that give a realistic, close-up appearance.",
            "A vibrant cartoon of a chameleon blending into a tie-dye pattern.",
            "A colorful cartoon of a tiger camouflaged in an abstract art painting, its stripes merging with the wild brushstrokes.",
            # "A 3D render of a cute, round rice ball character named Mochi, with big, sparkling eyes that convey curiosity and joy. Its body is a soft, fluffy white with a slight sheen, resembling freshly cooked rice. Mochi has small, rosy cheeks that give it a warm, friendly expression. A tiny smile brightens its face, and it often sports a colorful ribbon tied around its \"waist,\" adding a playful touch. Mochi's arms and feet are cartoonishly short, allowing it to bounce adorably around its surroundings. This time, Mochi is placed against a background that is a vibrant explosion of colors, with bright hues of fuchsia, turquoise, lemon yellow, and emerald green creating a canvas of vibrant contrasts and playful energy. The clashing colors make Mochi's soft white body and rosy cheeks stand out even more, inviting viewers into a world of cheerful exuberance and visual delight.",
            "The word 'mardefly' on a coffee mug.",
            "A group of seven people standing on a snow-covered slope, allwearing skis and posing for a picture."
        ],
        inputs=text_prompt_t2i,
    )
    submit_btn_t2i = gr.Button("Generate: Text-to-image")
    submit_btn_t2i.click(text_to_image_generation,
                         [text_prompt_t2i, guidance_scale_t2i, generation_timesteps_t2i],
                         [generated_img_t2i])

    banner_2 = gr.Markdown(value="# Text-guided inpainting")
    with gr.Row():
        inpainting_input_img = gr.Image(
            label="Input image",
            type="pil",
            # height=256,
            # width=256,
        )
        # inpainting_input_mask = gr.Image(
        #     label="Inpainting mask",
        #     image_mode="L",
        #     type="pil",
        #     height=256,
        #     width=256,
        # )
        inpainting_input_mask = gr.ImageMask(
            sources=["upload"],
            layers=False,
            transforms=[],
            format="png",
            label="Inpainting mask",
            show_label=True
        )

        with gr.Column():
            text_prompt_inpainting = gr.Textbox(
                label="Text prompt",
                lines=2,
                placeholder="Input the text prompt here for image inpainting."
            )
            guidance_scale_inpainting = gr.Slider(
                label="guidance scale",
                minimum=0,
                maximum=5,
                step=0.05,
                value=1.75
            )
            generation_timesteps_inpainting = gr.Slider(
                label="timesteps",
                minimum=1,
                maximum=30,
                step=1,
                value=16
            )
        generated_img_inpainting = gr.Image(
            label="Output image"
        )
    examples_inpainting = gr.Examples(
        label="Text-guided inpainting examples",
        examples=[
            [
                "a blue sports car with sleek curves and tinted windows, parked on a bustling city street.",
                Image.open("./inpainting_validation/bus.jpg").convert("RGB"),
                Image.open("./inpainting_validation/bus_mask.webp").convert("L"),
            ],
            [
                "a clear, shallow river with some vibrant flowers in it.",
                Image.open("./inpainting_validation/train.jpg").convert("RGB"),
                Image.open("./inpainting_validation/train_mask.webp").convert("L"),
            ],
        ],
        inputs=[text_prompt_inpainting, inpainting_input_img, inpainting_input_mask],
    )
    submit_btn_inpainting = gr.Button("Generate: Text-guided Inpainting")
    submit_btn_inpainting.click(text_guided_inpainting,
                                [text_prompt_inpainting, inpainting_input_img, inpainting_input_mask,
                                 guidance_scale_inpainting, generation_timesteps_inpainting],
                                [generated_img_inpainting])

    banner_3 = gr.Markdown(value="# Text-guided extrapolation")
    with gr.Row():
        extra_input_img = gr.Image(
            label="Input image",
            type="pil",
            image_mode="RGB",
        )

        with gr.Column():
            text_prompt_extrapolation = gr.Textbox(
                label="Text prompt",
                lines=1,
                placeholder="Input the text prompt here for image extrapolation."
            )
            guidance_scale_extrapolation = gr.Slider(
                label="guidance scale",
                minimum=0,
                maximum=5,
                step=0.05,
                value=1.75
            )
            generation_timesteps_extrapolation = gr.Slider(
                label="timesteps",
                minimum=1,
                maximum=30,
                step=1,
                value=16
            )
            left_extrapolation = gr.Slider(
                label="left extrapolation",
                minimum=0,
                maximum=5,
                step=1,
                value=1
            )
            right_extrapolation = gr.Slider(
                label="right extrapolation",
                minimum=0,
                maximum=5,
                step=1,
                value=1
            )
        generated_img_extrapolation = gr.Image(
            label="Output image"
        )
    examples_extra = gr.Examples(
        label="Text-guided extrapolation examples",
        examples=[
            [
                Image.open("./inpainting_validation/wukong2.jpg").convert("RGB"),
                "the continuous mountain ranges and jungles, with meandering rivers occasionally appearing.",
                2,
                2,
            ],
            [
                Image.open("./inpainting_validation/alpine_lake.jpg").convert("RGB"),
                "a serene natural landscape featuring a clear, blue lake surrounded by lush green trees.",
                2,
                2,
            ],
        ],
        inputs=[extra_input_img, text_prompt_extrapolation, left_extrapolation, right_extrapolation],
    )
    submit_btn_inpainting = gr.Button("Generate: Text-guided Extrapolation")
    submit_btn_inpainting.click(text_guided_extrapolation,
                                [extra_input_img, text_prompt_extrapolation, left_extrapolation, right_extrapolation,
                                 guidance_scale_extrapolation, generation_timesteps_extrapolation],
                                [generated_img_extrapolation])

    banner_4 = gr.Markdown(value="# Multimodal understanding")
    with gr.Row():
        with gr.Row():
            chat_input_img = gr.Image(
                label="Input image",
                type="pil",
                image_mode="RGB",
            )
        with gr.Column():
            chatbot = gr.Chatbot()
            msg = gr.Textbox(label="Press Enter to send a message for chat")
            clear = gr.ClearButton([msg, chatbot])
    msg.submit(multimodal_understanding, [chat_input_img, msg, chatbot], [msg, chatbot])

demo.launch()