File size: 7,505 Bytes
e319ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import pytorch_lightning as pl
import transformers as hf
import numpy as np

class LitModel(pl.LightningModule):
    ''' pytorch-lightning model '''

    def __init__(self, model, tokenizer, learning_rate = 5e-5):
        super().__init__()
        self.model = model
        self.tokenizer = tokenizer
        self.learning_rate = learning_rate

    def freeze_embeds(self):
        ''' freeze the positional embedding parameters of the model '''
        freeze_params(self.model.model.shared)
        for _ in [self.model.model.encoder, self.model.model.decoder]:
            freeze_params(_.embed_positions)
            freeze_params(_.embed_tokens)

    def forward(self, input_ids, **kwargs):
        return self.model(input_ids, **kwargs)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr = self.learning_rate)
        return optimizer

    def training_step(self, batch, batch_idx):
        # load the data into variables
        src_ids, src_mask = batch[0], batch[1]
        target_ids = batch[2]

        # shift the decoder tokens right
        decoder_input_ids = shift_tokens_right(target_ids, tokenizer.pad_token_id)

        # run the model and get the logits
        outputs = self(
            src_ids,
            attention_mask = src_mask,
            decoder_input_ids = decoder_input_ids,
            use_cache = False
        )
        logits = outputs[0]

        # create the loss function
        f_loss = torch.nn.CrossEntropyLoss(ignore_index = self.tokenizer.pad_token_id)

        # calculate the loss on the unshifted tokens
        loss = f_loss(logits.view(-1, logits.shape[-1]), target_ids.view(-1))

        return {'loss': loss}

    def validation_step(self, batch, batch_idx):
        src_ids, src_mask = batch[0], batch[1]
        target_ids = batch[2]
        decoder_input_ids = shift_tokens_right(target_ids, tokenizer.pad_token_id)
        outputs = self(
            src_ids,
            attention_mask = src_mask,
            decoder_input_ids = decoder_input_ids,
            use_cache = False
        )
        logits = outputs[0]
        f_loss = torch.nn.CrossEntropyLoss(ignore_index = self.tokenizer.pad_token_id)
        loss = f_loss(logits.view(-1, logits.shape[-1]), target_ids.view(-1))

        self.log('loss', torch.tensor([loss]))

        return {'loss': loss}

    def generate(self, text, min_length = 40, max_length = 256, eval_beams = 4, early_stopping = True):
        ''' generate text '''
        # generated = self.model.generate(
        #     text,
        #     min_length = min_length,
        #     max_length = max_length,
        #     num_beams = eval_beams,
        #     early_stopping = early_stopping
        # )
        generated = self.model.generate(
            text['input_ids'],
            attention_mask = text['attention_mask'],
            use_cache = True,
            decoder_start_token_id = self.tokenizer.pad_token_id,
            min_length = min_length,
            max_length = max_length,
            num_beams = eval_beams,
            early_stopping = early_stopping
        )
        return [self.tokenizer.decode(
            w,
            skip_special_tokens = True,
            clean_up_tokenization_spaces = True
        ) for w in generated]

def freeze_params(model):
    ''' freeze layers of model for faster training '''
    for layer in model.parameters():
        layer.requires_grade = False

class SummaryDataModule(pl.LightningDataModule):
    ''' pytorch-lightning dataloading module '''

    def __init__(self, tokenizer, dataframe, batch_size, num_examples = 20000):
        super().__init__()
        self.tokenizer = tokenizer
        self.dataframe = dataframe
        self.batch_size = batch_size
        self.num_examples = num_examples

    def prepare_data(self, split = [0.6, 0.2, 0.2]):
        ''' loads and splits data '''
        self.data = self.dataframe[:self.num_examples]
        self.train, self.validate, self.test = np.split(
            self.data.sample(frac = 1),
            [
             int(split[0] * len(self.data)),
             int(sum([split[i] for i in range(2)]) * len(self.data))
            ]
        )

    def setup(self, stage):
        self.train = encode_sentences(self.tokenizer, self.train['source'], self.train['target'])
        self.validate = encode_sentences(self.tokenizer, self.validate['source'], self.validate['target'])
        self.test = encode_sentences(self.tokenizer, self.test['source'], self.test['target'])

    def train_dataloader(self):
        dataset = torch.utils.data.TensorDataset(
            self.train['input_ids'],
            self.train['attention_mask'],
            self.train['labels']
        )
        train_data = torch.utils.data.DataLoader(
            dataset,
            sampler = torch.utils.data.RandomSampler(dataset),
            batch_size = self.batch_size
        )
        return train_data

    def val_dataloader(self):
        dataset = torch.utils.data.TensorDataset(
            self.validate['input_ids'],
            self.validate['attention_mask'],
            self.validate['labels']
        )
        val_data = torch.utils.data.DataLoader(
            dataset,
            batch_size = self.batch_size
        )
        return val_data

    def test_dataloader(self):
        dataset = torch.utils.data.TensorDataset(
            self.test['input_ids'],
            self.test['attention_mask'],
            self.test['labels']
        )
        test_data = torch.utils.data.DataLoader(
            dataset,
            batch_size = self.batch_size
        )
        return test_data

def shift_tokens_right(input_ids, pad_token_id):
    prev_output_tokens = input_ids.clone()
    index_of_eos = (input_ids.ne(pad_token_id).sum(dim = 1) - 1).unsqueeze(-1)
    prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
    prev_output_tokens[:, 1:] = input_ids[:, :-1]
    return prev_output_tokens

def encode_sentences(tokenizer, source_sentences, target_sentences, max_length = 128, pad_to_max_length = True, return_tensors = 'pt'):
    input_ids = []
    attention_masks = []
    target_ids = []
    tokenized_sentences = {}

    for s in source_sentences:
        encoded_dict = tokenizer(
            s,
            max_length = max_length,
            padding = 'max_length' if pad_to_max_length else None,
            truncation = True,
            return_tensors = return_tensors,
            add_prefix_space = True
        )
        input_ids.append(encoded_dict['input_ids'])
        attention_masks.append(encoded_dict['attention_mask'])
    
    input_ids = torch.cat(input_ids, dim = 0)
    attention_masks = torch.cat(attention_masks, dim = 0)

    for s in target_sentences:
        encoded_dict = tokenizer(
            s,
            max_length = max_length,
            padding = 'max_length' if pad_to_max_length else None,
            truncation = True,
            return_tensors = return_tensors,
            add_prefix_space = True
        )
        target_ids.append(encoded_dict['input_ids'])
    
    target_ids = torch.cat(target_ids, dim = 0)

    batch = {
        'input_ids': input_ids,
        'attention_mask': attention_masks,
        'labels': target_ids
    }

    return batch

tokenizer = hf.BartTokenizer.from_pretrained('sshleifer/distilbart-cnn-12-6', add_prefix_space = True)
base_model = hf.BartForConditionalGeneration.from_pretrained('sshleifer/distilbart-cnn-12-6')