Spaces:
Sleeping
Sleeping
test
Browse files
app.py
CHANGED
@@ -4,42 +4,45 @@ import base64
|
|
4 |
from Crypto.Cipher import AES
|
5 |
from Crypto.Util.Padding import unpad
|
6 |
|
|
|
7 |
def decrypt_file(input_path, key):
|
8 |
# 读取加密文件
|
9 |
-
with open(input_path,
|
10 |
encrypted_data = base64.b64decode(f.read())
|
11 |
-
|
12 |
-
key = key.ljust(32,
|
13 |
iv = encrypted_data[:16]
|
14 |
ciphertext = encrypted_data[16:]
|
15 |
|
16 |
cipher = AES.new(key, AES.MODE_CBC, iv)
|
17 |
plaintext = unpad(cipher.decrypt(ciphertext), AES.block_size)
|
18 |
-
|
19 |
-
return plaintext.decode(
|
20 |
|
21 |
|
22 |
-
llm = llama_cpp.Llama.from_pretrained(
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# embedding_1 = llm.create_embedding("Hello, world!")
|
25 |
# embedding_2 = llm.create_embedding("你好, 世界!") # type(embedding_1['data'][0]['embedding']) list
|
26 |
|
27 |
from pymilvus import MilvusClient
|
|
|
28 |
client = MilvusClient("./books.db")
|
29 |
|
30 |
-
client.create_collection(
|
31 |
-
collection_name="collection_1",
|
32 |
-
dimension=1024
|
33 |
-
)
|
34 |
|
35 |
import os, json
|
36 |
-
aeskey = os.getenv('aeskey')
|
37 |
-
decrypted_content = decrypt_file('encrypted.txt', aeskey)
|
38 |
-
raw_jsons = json.loads(decrypted_content)
|
39 |
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
-
with open(
|
43 |
all_embs = json.load(embedding_file)
|
44 |
|
45 |
|
@@ -51,14 +54,16 @@ for vhjx_index, vhjx_item in enumerate(raw_jsons):
|
|
51 |
for jvvi_item in vhjx_item[1:]:
|
52 |
content = jvvi_item["原文"]
|
53 |
docs.append(content)
|
54 |
-
metas.append(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
# 一个章节一次
|
63 |
# 批量生成 embeddings(每个为 list[float])
|
64 |
# emb_result = llm.create_embedding(docs)
|
@@ -68,30 +73,40 @@ for vhjx_index, vhjx_item in enumerate(raw_jsons):
|
|
68 |
milvus_data = []
|
69 |
for i, emb in enumerate(embeddings):
|
70 |
item = metas[i]
|
71 |
-
milvus_data.append(
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
80 |
print(f"✅ 共 {len(milvus_data)} 条数据")
|
81 |
|
82 |
# 插入数据
|
83 |
client.insert(collection_name="collection_1", data=milvus_data)
|
84 |
print(f"✅ 插入完成:共 {len(milvus_data)} 条数据")
|
85 |
|
|
|
86 |
def greet(name):
|
87 |
embeddings = llm.create_embedding(name)
|
88 |
res = client.search(
|
89 |
collection_name="collection_1",
|
90 |
-
data=[embeddings[
|
91 |
-
limit=
|
92 |
-
output_fields=["text", "
|
93 |
)
|
94 |
return res
|
95 |
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
demo.launch(mcp_server=True)
|
|
|
4 |
from Crypto.Cipher import AES
|
5 |
from Crypto.Util.Padding import unpad
|
6 |
|
7 |
+
|
8 |
def decrypt_file(input_path, key):
|
9 |
# 读取加密文件
|
10 |
+
with open(input_path, "rb") as f:
|
11 |
encrypted_data = base64.b64decode(f.read())
|
12 |
+
|
13 |
+
key = key.ljust(32, "0")[:32].encode("utf-8")
|
14 |
iv = encrypted_data[:16]
|
15 |
ciphertext = encrypted_data[16:]
|
16 |
|
17 |
cipher = AES.new(key, AES.MODE_CBC, iv)
|
18 |
plaintext = unpad(cipher.decrypt(ciphertext), AES.block_size)
|
19 |
+
|
20 |
+
return plaintext.decode("utf-8")
|
21 |
|
22 |
|
23 |
+
llm = llama_cpp.Llama.from_pretrained(
|
24 |
+
repo_id="mradermacher/bge-large-zh-v1.5-GGUF",
|
25 |
+
filename="bge-large-zh-v1.5.Q4_K_M.gguf",
|
26 |
+
embedding=True,
|
27 |
+
)
|
28 |
|
29 |
# embedding_1 = llm.create_embedding("Hello, world!")
|
30 |
# embedding_2 = llm.create_embedding("你好, 世界!") # type(embedding_1['data'][0]['embedding']) list
|
31 |
|
32 |
from pymilvus import MilvusClient
|
33 |
+
|
34 |
client = MilvusClient("./books.db")
|
35 |
|
36 |
+
client.create_collection(collection_name="collection_1", dimension=1024)
|
|
|
|
|
|
|
37 |
|
38 |
import os, json
|
|
|
|
|
|
|
39 |
|
40 |
+
aeskey = os.getenv("aeskey")
|
41 |
+
decrypted_content = decrypt_file("encrypted.txt", aeskey)
|
42 |
+
raw_jsons = json.loads(decrypted_content)
|
43 |
|
44 |
|
45 |
+
with open("embeddings.json", mode="r") as embedding_file:
|
46 |
all_embs = json.load(embedding_file)
|
47 |
|
48 |
|
|
|
54 |
for jvvi_item in vhjx_item[1:]:
|
55 |
content = jvvi_item["原文"]
|
56 |
docs.append(content)
|
57 |
+
metas.append(
|
58 |
+
{
|
59 |
+
"index": jvvi_item["index"],
|
60 |
+
"text": content,
|
61 |
+
"annotation": jvvi_item.get("注释", ""),
|
62 |
+
"critique": jvvi_item.get("批判", ""),
|
63 |
+
"chapter": chapter,
|
64 |
+
}
|
65 |
+
)
|
66 |
+
|
67 |
# 一个章节一次
|
68 |
# 批量生成 embeddings(每个为 list[float])
|
69 |
# emb_result = llm.create_embedding(docs)
|
|
|
73 |
milvus_data = []
|
74 |
for i, emb in enumerate(embeddings):
|
75 |
item = metas[i]
|
76 |
+
milvus_data.append(
|
77 |
+
{
|
78 |
+
"id": vhjx_index * 100 + i,
|
79 |
+
"index": item["index"],
|
80 |
+
"vector": emb,
|
81 |
+
"text": item["text"],
|
82 |
+
"annotation": item["annotation"],
|
83 |
+
"critique": item["critique"],
|
84 |
+
"chapter": item["chapter"],
|
85 |
+
}
|
86 |
+
)
|
87 |
print(f"✅ 共 {len(milvus_data)} 条数据")
|
88 |
|
89 |
# 插入数据
|
90 |
client.insert(collection_name="collection_1", data=milvus_data)
|
91 |
print(f"✅ 插入完成:共 {len(milvus_data)} 条数据")
|
92 |
|
93 |
+
|
94 |
def greet(name):
|
95 |
embeddings = llm.create_embedding(name)
|
96 |
res = client.search(
|
97 |
collection_name="collection_1",
|
98 |
+
data=[embeddings["data"][0]["embedding"]],
|
99 |
+
limit=5,
|
100 |
+
output_fields=["index", "text", "annotation", "critique"],
|
101 |
)
|
102 |
return res
|
103 |
|
104 |
+
|
105 |
+
demo = gr.Interface(
|
106 |
+
fn=greet,
|
107 |
+
inputs=gr.Textbox(label="输入部分原文句子"),
|
108 |
+
outputs=gr.JSON(label="查询结果"),
|
109 |
+
title="论语批判MCP (Embedding版本)",
|
110 |
+
description="输入模糊的论语原文,可以向量检索到对应的批判内容。",
|
111 |
+
)
|
112 |
demo.launch(mcp_server=True)
|