Spaces:
Sleeping
Sleeping
File size: 32,464 Bytes
c315863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
# Copyright 2024 Hao Zhang
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union, Dict
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from collections import OrderedDict
import transformers
# from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers import AutoConfig, AutoModelForCausalLM, Qwen2Config, Qwen2Model, Qwen2ForCausalLM
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from llava.model.language_model.hybrid_decoder_layer import Qwen2DecoderLayer, Qwen2HybridDecoderLayer
class LlavaQwenSlowFastConfig(Qwen2Config):
model_type = "llava_qwen_slow_fast"
class LlavaQwenSlowFastModel(LlavaMetaModel, Qwen2Model):
config_class = LlavaQwenSlowFastConfig
def __init__(self, config: Qwen2Config):
super(LlavaQwenSlowFastModel, self).__init__(config)
# initialize the cross-attention layers
self.slow_branch_is_initialized = False
if hasattr(config, "cross_attn_every_n_layers"):
self.initialize_slow_branch_modules(config)
def initialize_slow_branch_modules(self, args):
if self.slow_branch_is_initialized:
return
# number of decoder layers
num_layers = len(self.layers)
cross_attn_every_n_layers = args.cross_attn_every_n_layers
cross_attn_gating_type = args.cross_attn_gating_type
cross_attn_implementation = args.cross_attn_implementation
cross_attn_max_layer_depth = getattr(args, "cross_attn_max_layer_depth", num_layers)
cross_attn_min_layer_depth = getattr(args, "cross_attn_min_layer_depth", 0)
if cross_attn_max_layer_depth is None:
cross_attn_max_layer_depth = num_layers
if cross_attn_min_layer_depth is None:
cross_attn_min_layer_depth = 0
self.config.cross_attn_every_n_layers = cross_attn_every_n_layers
self.config.cross_attn_implementation = cross_attn_implementation
self.config.cross_attn_gating_type = cross_attn_gating_type
self.config.cross_attn_max_layer_depth = cross_attn_max_layer_depth
self.config.cross_attn_min_layer_depth = cross_attn_min_layer_depth
# set pooling operations
tile_image_input = getattr(args, "tile_image_input", True) # tile all the image input into a video sequence
min_fast_frames = getattr(args, "min_fast_frames", 1) # force to sample at least `min_fast_frames` frames for fast visual tokens
if min_fast_frames is None:
min_fast_frames = 1
self.config.tile_image_input = tile_image_input
self.config.min_fast_frames = min_fast_frames
# generate layer index for the hybrid layer
hybrid_layer_idx = []
for i in range(cross_attn_min_layer_depth, cross_attn_max_layer_depth, cross_attn_every_n_layers):
hybrid_layer_idx.append(i)
# substitute the original decoder layer with hybrid layer
initialize_kv_from_lm = getattr(args, "initialize_cross_attn_kv_from_lm", False) # whether use LLM's pretrained kv projection to initialize the kv projection weight of cross-attn
for idx in range(len(self.layers)):
if idx in hybrid_layer_idx:
original_decoder_layer = self.layers[idx]
hybrid_decoder_layer = Qwen2HybridDecoderLayer(self.config, layer_idx=idx, is_hyper_enabled=True, cross_attn_gating_type=cross_attn_gating_type, cross_attn_implementation=cross_attn_implementation)
_, unexpected_keys = hybrid_decoder_layer.load_state_dict(original_decoder_layer.state_dict(), strict=False) # cause problem when using deepspeed zero3
if initialize_kv_from_lm and hasattr(hybrid_decoder_layer.self_attn, "cross_attn_kv_proj"):
kv_weight = torch.cat([original_decoder_layer.self_attn.k_proj.weight,
original_decoder_layer.self_attn.v_proj.weight], dim=0)
kv_bias = torch.cat([original_decoder_layer.self_attn.k_proj.bias,
original_decoder_layer.self_attn.v_proj.bias], dim=0)
new_state_dict = OrderedDict()
new_state_dict['weight'] = kv_weight
new_state_dict['bias'] = kv_bias
hybrid_decoder_layer.self_attn.cross_attn_kv_proj.load_state_dict(new_state_dict)
assert len(unexpected_keys) == 0
self.layers[idx] = hybrid_decoder_layer
# fast token config
self.config.fast_token_spatial_stride = args.fast_token_spatial_stride
self.config.fast_token_temporal_stride = args.fast_token_temporal_stride
self.config.fast_token_temporal_sampling_stride = args.fast_token_temporal_sampling_stride
self.slow_branch_is_initialized = True
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training:
if use_cache:
# logger.warning_once(
# "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
# )
use_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
# logger.warning_once(
# "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
# "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
# "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
# )
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
if not isinstance(decoder_layer, Qwen2HybridDecoderLayer):
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class LlavaQwenSlowFastForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaQwenSlowFastConfig
def __init__(self, config):
Qwen2ForCausalLM.__init__(self, config)
config.model_type = "llava_qwen_slow_fast"
config.rope_scaling = None
self.model = LlavaQwenSlowFastModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def get_model(self):
return self.model
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, Qwen2HybridDecoderLayer):
module.gradient_checkpointing = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
modalities: Optional[List[str]] = ["image"],
cache_position=None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
modalities: Optional[List[str]] = ["image"],
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
if images is not None:
inputs["images"] = images
if image_sizes is not None:
inputs["image_sizes"] = image_sizes
return inputs
def sample_fast_frames(self,
total_frames,
stride,
min_frame_number):
all_indices_list = list(range(total_frames))
if total_frames < min_frame_number:
return all_indices_list
sampled_frames = max(total_frames // stride, min_frame_number)
stride = total_frames / sampled_frames
fast_indices = [min(int(i * stride), total_frames-1) for i in range(sampled_frames)]
return fast_indices
def split_slow_fast_tokens(self,
visual_tokens,
temporal_sampling_stride=1,
spatial_stride=1,
temporal_stride=1):
# TODO: Min: this function is very messy and can be simplified.
if isinstance(visual_tokens, torch.Tensor):
# for all image inputs, only perform spatial pooling
b, n, c = visual_tokens.shape
h = w = int(n**0.5)
fast_visual_tokens = nn.functional.avg_pool2d(visual_tokens.reshape(b, h, w, c).permute(0, 3, 1, 2),
kernel_size=spatial_stride,
stride=spatial_stride).flatten(2,3).transpose(1,2)
return fast_visual_tokens, visual_tokens
else:
fast_visual_tokens = []
for sample_ in visual_tokens:
t, n, c = sample_.shape
if t > 1: # is a video
T_downsampling_rate = temporal_sampling_stride * temporal_stride
if t % T_downsampling_rate != 0:
padding_size = (T_downsampling_rate - t % T_downsampling_rate) % T_downsampling_rate
# Pad on the first dimension (sequence length) with zeros
sample_ = nn.functional.pad(sample_, (0, 0, 0, 0, 0, padding_size)) # (dim_pad_left, dim_pad_right, T_pad_left, T_pad_right)
# 1. temporal direct sampling
if temporal_sampling_stride > 1:
fast_token_indices = self.sample_fast_frames(total_frames=t,
stride=temporal_sampling_stride,
min_frame_number=self.config.min_fast_frames)
else:
fast_token_indices = list(range(t))
sample_ = torch.stack([sample_[idx] for idx in fast_token_indices], dim=0)
b, n, c = sample_.shape
h = w = int(n**0.5)
sample_ = sample_.reshape(b, h, w, c).permute(0, 3, 1, 2)
# 2. temporal average pooling
if temporal_stride > 1:
if (sample_.shape[0] // temporal_stride) >= self.config.min_fast_frames:
sample_ = nn.functional.avg_pool3d(sample_.transpose(0, 1), kernel_size=(temporal_stride, 1, 1)).transpose(0, 1)
else:
h_, w_ = sample_.shape[-2:]
output_frames_num = min(sample_.shape[0], self.config.min_fast_frames)
sample_ = nn.functional.adaptive_avg_pool3d(sample_.transpose(0, 1), output_size=(output_frames_num, h_, w_)).transpose(0, 1)
# 3. spatial pooling
if spatial_stride > 1:
sample_ = nn.functional.avg_pool2d(sample_,
kernel_size=spatial_stride,
stride=spatial_stride)
sample_ = sample_.flatten(2,3).transpose(1,2)
else:
if spatial_stride > 1:
h = w = int(n**0.5)
sample_ = sample_.reshape(t, h, w, c).permute(0, 3, 1, 2)
sample_ = nn.functional.avg_pool2d(sample_,
kernel_size=spatial_stride,
stride=spatial_stride)
sample_ = sample_.flatten(2,3).transpose(1,2)
fast_visual_tokens.append(sample_.flatten(0, 1).contiguous())
slow_visual_tokens = [_.flatten(0, 1).contiguous() for _ in visual_tokens]
return fast_visual_tokens, slow_visual_tokens
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels,
images, image_sizes=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
# clear the visual tokens if current one is a pure text sample
if images is None and input_ids.shape[1] > 1:
for layer in self.get_decoder().layers:
if hasattr(layer, "clear_vis_x"):
layer.clear_vis_x()
token_types = torch.ones_like(input_ids, dtype=input_ids.dtype, device=input_ids.device)
for layer in self.get_decoder().layers:
if hasattr(layer, "condition_vis_x"):
layer.media_locations = token_types
return input_ids, position_ids, attention_mask, past_key_values, None, labels
# handle image input
images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] # list [ [T, C, H, W], ]
feature_split_size = [x.shape[0] for x in images]
all_features, feature_split_size = self.encode_images(torch.cat(images, dim=0), feature_split_size)
raw_image_features = torch.split(all_features, feature_split_size, dim=0)
image_features = []
for sample_feat in raw_image_features: # initial spatial pooling for all video tokens
if sample_feat.shape[0] > 1 and self.config.mm_video_pooling_stride > 1:
b, n, c = sample_feat.shape
h = w = int(n**0.5)
sample_feat = nn.functional.avg_pool2d(sample_feat.reshape(b, h, w, c).permute(0, 3, 1, 2),
kernel_size=self.config.mm_video_pooling_stride,
stride=self.config.mm_video_pooling_stride).flatten(2,3).transpose(1,2)
image_features.append(sample_feat.contiguous())
del raw_image_features, all_features
## generate fast and slow tokens
image_features, slow_image_features = self.split_slow_fast_tokens(image_features,
temporal_sampling_stride=self.config.fast_token_temporal_sampling_stride,
spatial_stride=self.config.fast_token_spatial_stride,
temporal_stride=self.config.fast_token_temporal_stride)
## set cross-attention states
if isinstance(slow_image_features, (list, tuple)):
padded_tensors = torch.nn.utils.rnn.pad_sequence(slow_image_features, batch_first=True)
cross_attn_mask = torch.ones(padded_tensors.shape[:-1], dtype=torch.bool, device=padded_tensors.device)
for i, tensor in enumerate(slow_image_features):
cross_attn_mask[i, len(tensor):] = False # Mark padded elements as False
slow_image_features = padded_tensors
else:
cross_attn_mask = torch.ones(slow_image_features.shape[:-1], dtype=torch.bool, device=slow_image_features.device)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
new_token_types = []
# NOTE: Min: we need to record the type of tokens so that we can split the tokens in the hybrid decoder layer
# Token type 1: user's input and system tokens, 2: response text tokens, 3: visual tokens, 4: invalid tokens (padding)
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_token_type = torch.full((cur_input_ids.shape[0],), 2, dtype=cur_input_ids[-1].dtype, device=cur_input_ids[-1].device)
cur_token_type[labels[batch_idx] == IGNORE_INDEX] = 1 # token with ignore tokens are considered as user input
new_token_types.append(cur_token_type)
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
cur_token_type_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
cur_token = torch.full((cur_labels_noim[-1].shape[0],), 2, dtype=cur_input_ids_noim[-1].dtype, device=cur_input_ids_noim[-1].device)
cur_token[cur_labels[image_token_indices[i]+1:image_token_indices[i+1]] == IGNORE_INDEX] = 1 # ingored tokens are considered as user input
cur_token_type_noim.append(cur_token)
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
cur_new_token_type = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
cur_new_token_type.append(cur_token_type_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_token_type.append(torch.full((cur_image_features.shape[0],), 3, device=cur_labels.device, dtype=cur_labels.dtype)) # insert image token type
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
cur_new_token_type = torch.cat(cur_new_token_type) ##
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
new_token_types.append(cur_new_token_type) ##
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
new_token_types = [x[:tokenizer_model_max_length] for x in new_token_types]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
new_token_types_padded = torch.full((batch_size, max_len), 4, dtype=new_labels[0].dtype, device=new_labels[0].device) ## 4 is invalid token type (padding)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_token_types_padded[i, -cur_len:] = new_token_types[i] ##
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_token_types_padded[i, :cur_len] = new_token_types[i]
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
# token type
token_types = new_token_types_padded
# send token type to cross-attn layers
if _input_ids is not None and _input_ids.shape[-1] == 1:
pass
else:
if slow_image_features is not None:
for layer in self.get_decoder().layers:
if hasattr(layer, "condition_vis_x"):
layer.condition_vis_x(slow_image_features,
cross_attn_mask,
token_type=token_types)
else:
for layer in self.get_decoder().layers:
if hasattr(layer, "clear_vis_x"):
layer.clear_vis_x()
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
AutoConfig.register("llava_qwen_slow_fast", LlavaQwenSlowFastConfig)
AutoModelForCausalLM.register(LlavaQwenSlowFastConfig, LlavaQwenSlowFastForCausalLM) |