File size: 33,175 Bytes
2a21e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
import re, json
import os, random
import torch, logging
from copy import deepcopy as cp
from torch.utils.data import Dataset
from tokenizers import ByteLevelBPETokenizer
from transformers import T5Tokenizer, RobertaTokenizer
import nltk

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)



class MyTokenizer(object):
    """
    Wrapper for ByteLevelBPETokenizer
    """
    def __init__(self, vocab=None, merges=None, **kwargs):
        self.tokenizer = ByteLevelBPETokenizer(vocab, merges, **kwargs)
        self.update_id2token()

    @staticmethod
    def from_pretrained(path):
        vocabp = os.path.join(path, "vocab.json")
        mergesp = os.path.join(path, "merges.txt")
        mytoken = MyTokenizer(vocabp, mergesp)
        return mytoken

    def update_id2token(self):
        vocab = self.tokenizer.get_vocab()
        self.id2token = {vocab[token]: token for token in vocab}

    def add_special_tokens(self, dic):
        for values in dic.values():
            self.tokenizer.add_special_tokens(values)
        self.update_id2token()

    def convert_ids_to_tokens(self, ids):
        vocab = self.id2token
        return [vocab[i] for i in ids]
    
    def decode(self, ids, **kwargs):    ##### to be update
        tokens = self.convert_ids_to_tokens(ids)
        return " ".join(tokens)

    def encode(self, text, **kwargs):
        text = text.encode("ascii", errors="ignore").decode("ascii")
        return self.tokenizer.encode(text).ids

    def get_vocab(self):
        return self.tokenizer.get_vocab()

    def __len__(self):
        return len(self.tokenizer.get_vocab())


class RefineFeatures(object):
    def __init__(self, example_id, source_ids, target_ids):
        self.example_id = example_id
        self.source_ids = source_ids
        self.target_ids = target_ids

class RefineDataset(Dataset):
    def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
        self.tokenizer = tokenizer
        self.args = args
        logger.info("Reading examples from {}".format(file_path))
        examples = [json.loads(line) for line in open(file_path)]
        for i in range(len(examples)):
            if "id" not in examples[i]:
                examples[i]["id"] = i
        if samplenum > 0:
            examples = examples[:samplenum]
        logger.info(f"Tokenize examples: {file_path}")
        self.feats = pool.map(self.tokenize, \
            [(example, tokenizer, args) for example in examples])
        
    def tokenize(self, item):
        example, tokenizer, args = item
        oldlines = example["old"].split("\n")
        newlines = example["new"].split("\n")
        oldlines = [line[1:].strip() for line in oldlines]
        newlines = [line[1:].strip() for line in newlines]
        oldlines = "\n".join(oldlines)
        newlines = "\n".join(newlines)
        oldlines = "<add>" + oldlines.replace("\n", "<add>")
        newlines = "<add>" + newlines.replace("\n", "<add>")
        comment = example["comment"]
        srcids = self.encode_remove(tokenizer, oldlines, args)
        srcids += [tokenizer.msg_id] + self.encode_remove(tokenizer, comment, args)
        tgtids = self.encode_remove(tokenizer, newlines, args)
        srcids, tgtids = self.pad_assert(srcids, tgtids, args, tokenizer)
        return RefineFeatures(example["id"], srcids, tgtids)

    @staticmethod
    def process_pred_gold(pred, gold):
        gold = gold.split("\n")
        gold = [line[1:].strip() for line in gold]
        gold = " ".join(gold)
        pred = " ".join(pred.split())
        pred = pred.replace("<add> ", "")
        return pred, gold

    def pad_assert(self, source_ids, target_ids, args, tokenizer):
        source_ids = source_ids[:args.max_source_length - 2]
        source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
        pad_len = args.max_source_length - len(source_ids)
        source_ids += [tokenizer.pad_id] * pad_len
        target_ids = target_ids[:args.max_target_length - 2]
        target_ids = [tokenizer.bos_id] + target_ids + [tokenizer.eos_id]
        pad_len = args.max_target_length - len(target_ids)
        target_ids += [tokenizer.pad_id] * pad_len
        assert len(source_ids) == args.max_source_length, "Not equal length."
        assert len(target_ids) == args.max_target_length, "Not equal length."
        return source_ids, target_ids

    def encode_remove(self, tokenizer, text, args):
        text = tokenizer.encode(text, max_length=args.max_source_length, truncation=True)
        if type(tokenizer) == T5Tokenizer:
            return text[:-1]
        elif type(tokenizer) == RobertaTokenizer:
            return text[1:-1]
        elif type(tokenizer) == MyTokenizer:
            return text
        else:
            raise NotImplementedError

    def __len__(self):
        return len(self.feats)

    def __getitem__(self, i):
        return self.feats[i]

class SimpleRefineDataset(RefineDataset):
    def tokenize(self, item):
        example, tokenizer, args = item
        oldlines = example["old"].split("\n")
        newlines = example["new"].split("\n")
        oldlines = [line[1:].strip() for line in oldlines]
        newlines = [line[1:].strip() for line in newlines]
        oldlines = " ".join(oldlines)
        newlines = " ".join(newlines)
        comment = example["comment"]
        srcids = self.encode_remove(tokenizer, oldlines, args)
        srcids += [tokenizer.msg_id] + self.encode_remove(tokenizer, comment, args)
        tgtids = self.encode_remove(tokenizer, newlines, args)
        srcids, tgtids = self.pad_assert(srcids, tgtids, args, tokenizer)
        return RefineFeatures(example["id"], srcids, tgtids)

    @staticmethod
    def process_pred_gold(pred, gold):
        gold = gold.split("\n")
        gold = [line[1:].strip() for line in gold]
        gold = " ".join(gold)
        pred = " ".join(pred.split())
        return pred, gold


class Seq2SeqDataset(RefineDataset):
    def tokenize(self, item):
        example, tokenizer, args = item
        inputs, outputs = example["old"], example["new"]
        inputs = " ".join(inputs.split())
        outputs = " ".join(outputs.split())
        srcids = self.encode_remove(tokenizer, inputs, args)
        tgtids = self.encode_remove(tokenizer, outputs, args)
        srcids, tgtids = self.pad_assert(srcids, tgtids, args, tokenizer)
        return RefineFeatures(example["id"], srcids, tgtids)
    
    @staticmethod
    def process_pred_gold(pred, gold):
        gold = " ".join(gold.split())
        pred = " ".join(pred.split())
        return pred, gold


class TextDataset(Dataset):
    def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
        self.cnt = 0
        self.tokenizer = tokenizer
        self.args = args
        if isinstance(tokenizer, MyTokenizer):
            tokenizer_type = "mytok"
        elif isinstance(tokenizer, T5Tokenizer):
            tokenizer_type = ""
        elif isinstance(tokenizer, RobertaTokenizer):
            tokenizer_type = "rb"
        else:
            tokenizer_type = "unk"
        savep = file_path.replace(".jsonl", tokenizer_type + ".exps")
        # savep = "/home/v-zhuoli1/lzzz/processed/chunk_25.exps"
        if os.path.exists(savep):
            logger.info("Loading examples from {}".format(savep))
            examples = torch.load(savep)
        else:
            logger.info("Reading examples from {}".format(file_path))
            examples = read_review_examples(file_path, samplenum, tokenizer)
            logger.info(f"Tokenize examples: {file_path}")
            examples = pool.map(self.tokenize, \
                [(example, tokenizer, args) for example in examples])
            torch.save(examples, savep)
        logger.info("Convert examples to features...")
        self.set_start_end_ids(examples)
        self.featss = pool.map(self.convert_examples_to_features, \
            [(example, tokenizer, args) for example in examples])
        self.feats = [feat for feats in self.featss for feat in feats]  # expand the lists

    def __len__(self):
        return len(self.feats)

    def __getitem__(self, i):
        return self.feats[i]

    def reset_len(self, data_len):
        assert len(self.feats) >= data_len
        self.feats = self.feats[:data_len]

    def set_start_end_ids(self, examples):
        for example in examples:
            labels = example.labels
            start_id = 0
            end_id = len(labels) - 1
            for i, label in enumerate(labels):
                if label != -100:               # find the first label
                    start_id = i
                    break
            for i in range(len(labels) - 1, -1, -1):
                label = labels[i]
                if label != -100:
                    end_id = i
                    break
            example.start_id = start_id
            example.end_id = end_id

    def tokenize(self, item):
        example, tokenizer, args = item
        example.input = self.encode_remove(tokenizer, example.input, args)
        e0id = tokenizer.special_dict["<e0>"]
        inputs = " ".join(str(id) for id in example.input)
        lines = inputs.split(" " + str(e0id) + " ")
        lines = [
            [int(v) for v in line.split(" ") if len(v) > 0] for line in lines
        ]
        lens = [len(line) for line in lines]
        # if 0 in lens:
        #     logger.info("Warning: empty line in an example.")
        lens = list(map(len, lines))
        curlen = len(lens) + sum(lens)
        left, right = 0, len(lines)
        while curlen > args.max_source_length - 2:
            if left % 2 == 0:
                curlen -= 1 + len(lines[left])
                left += 1
            else:
                right -= 1
                curlen -= 1 + len(lines[right])
        lines = lines[left:right]
        labels = example.labels[left:right]
        assert len(lines) + sum(map(len, lines)) <= args.max_source_length - 2, "Too long inputs in TextDataset.tokenize."
        if len(lines) != len(labels):
            logger.info("Not equal length in TextDataset.tokenize.")
            lines = lines[:len(labels)]
            labels = labels[:len(lines)]
        example.lines = lines
        example.labels = labels
        example.msg = self.encode_remove(tokenizer, example.msg, args)
        return example

    def convert_examples_to_features(self, item):
        example, _, _ = item
        if len(example.msg) > 0:
            exs = []
            for _ in range(3):  # up sampling
                if random.random() < 0.5:
                    exs.append(self.genmsg_example(item))
                else:
                    exs.append(self.daemsg_example(item))
            return exs
        if random.random() < 0.5:
            return [self.encoder_example(item)]
        return [self.decoder_example(item)]

    def encoder_example(self, item):
        example, tokenizer, args = item
        lines = example.lines
        labels = example.labels
        target_ids = [tokenizer.pad_id] * args.max_target_length
        source_ids, input_labels = [], []
        for i, (line, label) in enumerate(zip(lines, labels)):
            if i == example.start_id:
                source_ids.append(tokenizer.start_id)
                input_labels.append(-100)
            if label != -100:       # only insert special tokens at diffs, not context
                source_ids.append(tokenizer.mask_id)
                input_labels.append(label)
            source_ids.extend(line)
            input_labels.extend([-100] * len(line))
            if i == example.end_id:
                source_ids.append(tokenizer.end_id)
                input_labels.append(-100)
        assert len(input_labels) == len(source_ids), "Not equal length."
        assert len(input_labels) <= args.max_source_length, f"Too long inputs: {len(input_labels)}."
        source_ids = source_ids[:args.max_source_length - 2]
        input_labels = input_labels[:args.max_source_length - 2]
        source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
        input_labels = [-100] + input_labels + [-100]
        pad_len = args.max_source_length - len(source_ids)
        source_ids += [tokenizer.pad_id] * pad_len
        input_labels += [-100] * pad_len

        new_input_labels = []
        map_dict = {0: tokenizer.del_id, 1: tokenizer.add_id, 2: tokenizer.keep_id}
        for label in input_labels:
            if label == -100:
                new_input_labels.append(-100)
            else:
                new_input_labels.append(map_dict[label])
        input_labels = new_input_labels
        assert len(source_ids) == args.max_source_length, "Not equal length."
        assert len(input_labels) == args.max_source_length, "Not equal length."
        return ReviewFeatures(example.idx, source_ids, input_labels, target_ids, type="label")

    def decoder_example(self, item):
        example, tokenizer, args = item
        lines = example.lines
        labels = example.labels

        input_labels = [-100] * args.max_source_length
        source_ids, target_ids = [], []
        SPECIAL_ID = 0
        mask_idxs = random.choices(range(len(lines)), k=int(len(lines) * args.mask_rate))
        id_dict = {0: tokenizer.del_id, 1: tokenizer.add_id, 2: tokenizer.keep_id}
        for i, (line, label) in enumerate(zip(lines, labels)):
            if i == example.start_id:
                source_ids.append(tokenizer.start_id)
            if label in id_dict:
                source_ids.append(id_dict[label])
            if i in mask_idxs:
                source_ids.append(tokenizer.special_dict[f"<e{SPECIAL_ID}>"])
                target_ids.append(tokenizer.special_dict[f"<e{SPECIAL_ID}>"])
                target_ids.extend(line)
                if SPECIAL_ID < 99:     # only 0-99 ids in vocab
                    SPECIAL_ID += 1
            else:
                source_ids.extend(line)
            if i == example.end_id:
                source_ids.append(tokenizer.end_id)
        source_ids, target_ids = self.pad_assert(source_ids, target_ids, args, tokenizer)
        return ReviewFeatures(example.idx, source_ids, input_labels, target_ids, type="line")

    def genmsg_example(self, item):
        example, tokenizer, args = item
        lines = example.lines
        labels = example.labels
        input_labels = [-100] * args.max_source_length
        source_ids, target_ids = [], []
        id_dict = {0: tokenizer.del_id, 1: tokenizer.add_id, 2: tokenizer.keep_id}
        for i, (line, label) in enumerate(zip(lines, labels)):
            if i == example.start_id:
                source_ids.append(tokenizer.start_id)
            if label != -100:
                source_ids.append(id_dict[label])
            source_ids.extend(line)
            if i == example.end_id:
                source_ids.append(tokenizer.end_id)
        target_ids.append(tokenizer.msg_id)
        target_ids.extend(example.msg)
        assert len(source_ids) <= args.max_source_length, f"Too long inputs: {len(source_ids)}."
        source_ids, target_ids = self.pad_assert(source_ids, target_ids, args, tokenizer)
        return ReviewFeatures(example.idx, source_ids, input_labels, target_ids, type="genmsg")

    def daemsg_example(self, item):
        example, tokenizer, args = item
        input_labels = [-100] * args.max_source_length
        source_ids, target_ids = [], []
        msg_ids = cp(example.msg)
        masks = [random.random() < 0.20 for _ in range(len(msg_ids))]
        if sum(masks) == 0:
            idx = random.choice(range(len(msg_ids)))
            masks[idx] = True
        source_ids, target_ids = [], []
        i = 0
        SPECIAL_ID = 0
        while i < len(masks):
            j = i
            while j < len(masks) and not masks[j]:
                source_ids.append(msg_ids[j])
                j += 1
            if j == len(masks):
                break
            source_ids.append(tokenizer.special_dict[f"<e{SPECIAL_ID}>"])
            target_ids.append(tokenizer.special_dict[f"<e{SPECIAL_ID}>"])
            while j < len(masks) and masks[j]:
                target_ids.append(msg_ids[j])
                j += 1
            if SPECIAL_ID < 99:     # only 0-99 ids in vocab
                SPECIAL_ID += 1
            i = j
        source_ids, target_ids = self.pad_assert(source_ids, target_ids, args, tokenizer)
        return ReviewFeatures(example.idx, source_ids, input_labels, target_ids, type="daemsg")

    def pad_assert(self, source_ids, target_ids, args, tokenizer):
        source_ids = source_ids[:args.max_source_length - 2]
        source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
        pad_len = args.max_source_length - len(source_ids)
        source_ids += [tokenizer.pad_id] * pad_len
        target_ids = target_ids[:args.max_target_length - 1]
        target_ids = target_ids + [tokenizer.eos_id]
        pad_len = args.max_target_length - len(target_ids)
        target_ids += [tokenizer.pad_id] * pad_len
        assert len(source_ids) == args.max_source_length, "Not equal length."
        assert len(target_ids) == args.max_target_length, "Not equal length."
        return source_ids, target_ids

    def encode_remove(self, tokenizer, text, args):
        text = tokenizer.encode(text, max_length=args.max_source_length, truncation=True)
        if type(tokenizer) == T5Tokenizer:
            return text[:-1]
        elif type(tokenizer) == RobertaTokenizer:
            return text[1:-1]
        elif type(tokenizer) == MyTokenizer:
            return text
        else:
            raise NotImplementedError


class CommentGenDataset(TextDataset):
    def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
        self.tokenizer = tokenizer
        if isinstance(tokenizer, MyTokenizer):
            tokenizer_type = "mytok"
        elif isinstance(tokenizer, T5Tokenizer):
            tokenizer_type = ""
        elif isinstance(tokenizer, RobertaTokenizer):
            tokenizer_type = "rb"
        else:
            tokenizer_type = "unk"
        savep = file_path.replace(".jsonl", tokenizer_type + ".exps")
        if os.path.exists(savep):
            logger.info("Loading examples from {}".format(savep))
            examples = torch.load(savep)
        else:
            logger.info("Reading examples from {}".format(file_path))
            examples = read_review_examples(file_path, samplenum, tokenizer)
            # for i in range(len(examples)):
            #     examples[i].msg = " ".join(nltk.word_tokenize(examples[i].msg))
            logger.info(f"Tokenize examples: {file_path}")
            examples = pool.map(self.tokenize, \
                [(example, tokenizer, args) for example in examples])
            torch.save(examples, savep)
        logger.info("Convert examples to features...")
        self.set_start_end_ids(examples)
        self.feats = pool.map(self.convert_examples_to_features, \
            [(example, tokenizer, args) for example in examples])
        self.feats = [feat for feat in self.feats if feat is not None]

    def convert_examples_to_features(self, item):
        example, tokenizer, args = item
        if len(example.msg) == 0:
            return None
        return self.genmsg_example(item)


class CommentClsDataset(TextDataset):
    def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
        self.tokenizer = tokenizer
        if isinstance(tokenizer, MyTokenizer):
            tokenizer_type = "mytok"
        elif isinstance(tokenizer, T5Tokenizer):
            tokenizer_type = ""
        elif isinstance(tokenizer, RobertaTokenizer):
            tokenizer_type = "rb"
        else:
            tokenizer_type = "unk"
        savep = file_path.replace(".jsonl", tokenizer_type + ".exps")
        if os.path.exists(savep):
            logger.info("Loading examples from {}".format(savep))
            examples = torch.load(savep)
        else:
            logger.info("Reading examples from {}".format(file_path))
            examples = read_review_examples(file_path, samplenum, tokenizer)
            logger.info(f"Tokenize examples: {file_path}")
            examples = pool.map(self.tokenize, \
                [(example, tokenizer, args) for example in examples])
            torch.save(examples, savep)
        logger.info("Convert examples to features...")
        self.set_start_end_ids(examples)
        self.feats = pool.map(self.convert_examples_to_features, \
            [(example, tokenizer, args) for example in examples])

    def convert_examples_to_features(self, item):
        example, tokenizer, args = item
        tmpfeature = self.genmsg_example(item)
        return ClsFeatures(tmpfeature.example_id, tmpfeature.source_ids, example.y)


class SimpleClsDataset(TextDataset):
    def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
        self.tokenizer = tokenizer
        if isinstance(tokenizer, MyTokenizer):
            tokenizer_type = "mytok"
        elif isinstance(tokenizer, T5Tokenizer):
            tokenizer_type = ""
        elif isinstance(tokenizer, RobertaTokenizer):
            tokenizer_type = "rb"
        else:
            tokenizer_type = "unk"
        savep = file_path.replace(".jsonl", tokenizer_type + ".simpexps")
        if os.path.exists(savep):
            logger.info("Loading examples from {}".format(savep))
            self.feats = torch.load(savep)
        else:
            logger.info("Reading examples from {}".format(file_path))
            examples = read_review_examples(file_path, samplenum, tokenizer)
            logger.info(f"Tokenize examples: {file_path}")
            self.feats = pool.map(self.convert_examples_to_features, \
                [(example, tokenizer, args) for example in examples])
            torch.save(self.feats, savep)

    def convert_examples_to_features(self, item):
        example, tokenizer, args = item
        example.input_lines = example.input.split("<e0>")
        labels_l = len(example.labels)
        example.input_lines = example.input_lines[:labels_l]
        for i in range(len(example.input_lines)):
            if example.labels[i] == 1:
                example.input_lines[i] = "+ " + example.input_lines[i]
            elif example.labels[i] == 0:
                example.input_lines[i] = "- " + example.input_lines[i]
        example.input = " ".join(example.input_lines)
        input_ids = self.encode_remove(tokenizer, example.input, args)
        exceed_l = len(input_ids) - args.max_source_length + 2
        if exceed_l > 0:
            halfexl = (exceed_l + 1) // 2
            input_ids = input_ids[halfexl:-halfexl]
        source_ids = input_ids[:args.max_source_length - 2]
        source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
        pad_len = args.max_source_length - len(source_ids)
        source_ids += [tokenizer.pad_id] * pad_len
        example_id = example.idx
        y = example.y
        return ClsFeatures(example_id, source_ids, y)


class SimpleGenDataset(TextDataset):
    def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
        self.tokenizer = tokenizer
        if isinstance(tokenizer, MyTokenizer):
            tokenizer_type = "mytok"
        elif isinstance(tokenizer, T5Tokenizer):
            tokenizer_type = ""
        elif isinstance(tokenizer, RobertaTokenizer):
            tokenizer_type = "rb"
        else:
            tokenizer_type = "unk"
        savep = file_path.replace(".jsonl", tokenizer_type + ".simpgenexps")
        if os.path.exists(savep):
            logger.info("Loading examples from {}".format(savep))
            self.feats = torch.load(savep)
        else:
            logger.info("Reading examples from {}".format(file_path))
            data = read_jsonl(file_path)
            # data = [dic for dic in data if len(dic["patch"].split("\n")) <= 20]
            for i in range(len(data)):
                data[i]["idx"] = i
            logger.info(f"Tokenize examples: {file_path}")
            # self.feats = pool.map(self.convert_examples_to_features, \
            #     [(dic, tokenizer, args) for dic in data])
            self.feats = [self.convert_examples_to_features((dic, tokenizer, args)) for dic in data]
            torch.save(self.feats, savep)

    def convert_examples_to_features(self, item):
        dic, tokenizer, args = item
        diff, msg = dic["patch"], dic["msg"]
        difflines = diff.split("\n")[1:]        # remove start @@
        difflines = [line for line in difflines if len(line.strip()) > 0]
        map_dic = {"-": 0, "+": 1, " ": 2}
        def f(s):
            if s in map_dic:
                return map_dic[s]
            else:
                return 2
        labels = [f(line[0]) for line in difflines]
        difflines = [line[1:].strip() for line in difflines]
        inputstr = ""
        for label, line in zip(labels, difflines):
            if label == 1:
                inputstr += "<add>" + line
            elif label == 0:
                inputstr += "<del>" + line
            else:
                inputstr += "<keep>" + line
        source_ids = self.encode_remove(tokenizer, inputstr, args)
        target_ids = []
        target_ids.append(tokenizer.msg_id)
        msg = self.encode_remove(tokenizer, dic["msg"], args)
        target_ids.extend(msg)
        source_ids, target_ids = self.pad_assert(source_ids, target_ids, args, tokenizer)
        input_labels = [-100] * len(source_ids)
        return ReviewFeatures(dic["idx"], source_ids, input_labels, target_ids, type="genmsg")


class InputFeatures(object):
    """A single training/test features for a example."""

    def __init__(self, example_id, source_ids, target_ids, url=None):
        self.example_id = example_id
        self.source_ids = source_ids
        self.target_ids = target_ids
        self.url = url


class ReviewFeatures(object):
    def __init__(self, example_id, source_ids, source_labels, target_ids, type):
        self.example_id = example_id
        self.source_ids = source_ids
        self.source_labels = source_labels
        self.target_ids = target_ids
        assert type in ("label", "line", "genmsg", "daemsg")
        self.type = type

class ClsFeatures(object):
    def __init__(self, example_id, source_ids, y):
        self.example_id = example_id
        self.source_ids = source_ids
        self.y = y

class ReviewExample(object):
    """A single training/test example."""

    def __init__(
        self, idx, oldf, diff, msg, cmtid, max_len, y
    ):
        self.idx = idx      # idx is useless yet
        self.oldf = oldf
        self.diff = diff
        self.msg = msg
        self.cmtid = cmtid
        self.max_len = max_len
        self.y = y
        self.prevlines = []
        self.afterlines = []
        self.lines = []
        self.labels = []
        self.avail = False
        self.input = ""
        self.align_and_clean()
        self.postprocess()

    def postprocess(self):
        if not self.avail:
            return
        # Warning: lines is not self.lines
        # lines for rough length estimation
        lines = [source_str.split() for source_str in self.lines]
        inputl = len(lines) # line tag
        inputl += sum(map(len, lines))
        left, right = 0, len(lines)
        while inputl > self.max_len:
            if left % 2 == 0:
                inputl -= len(lines[left]) + 1
                left += 1
            else:
                right -= 1
                inputl -= len(lines[right]) + 1
        lines = lines[left:right]
        self.lines = self.lines[left:right]
        self.labels = self.labels[left:right]
        prevlines = self.prevlines
        afterlines = self.afterlines
        prev_after_len = max(len(prevlines), len(afterlines))
        i = 0
        while inputl < self.max_len and i < prev_after_len:
            if i < len(prevlines):
                newl = inputl + len(prevlines[-1-i].split()) + 1
                if newl > self.max_len:
                    break
                self.lines.insert(0, prevlines[-1-i])
                self.labels.insert(0, -100)
                inputl = newl  # tag
            if i < len(afterlines):
                newl = inputl + len(afterlines[i].split()) + 1
                if newl > self.max_len:
                    break
                self.lines.append(afterlines[i])
                self.labels.append(-100)
                inputl = newl    # tag
            i += 1
        assert inputl <= self.max_len, "Too long inputs."
        assert len(self.lines) == len(self.labels), "Not equal length."
        self.input = "<e0>".join(self.lines)
        self.prevlines, self.lines, self.afterlines = [], [], []

    def remove_space_clean(self, line):
        """
            Remove start and end empty chars.
        """
        rep = " \t\r"
        totallen = len(line)
        i = 0
        while i < totallen and line[i] in rep:
            i += 1
        j = totallen - 1
        while j >= 0 and line[j] in rep:
            j -= 1
        line = line[i : j + 1]
        return line

    def align_and_clean(self):
        oldflines = self.oldf.split("\n")
        difflines = self.diff.split("\n")
        first_line = difflines[0]
        difflines = difflines[1:]
        difflines = [line for line in difflines if line != r"\ No newline at end of file"]
        regex = r"@@ -(\d+),(\d+) \+(\d+),(\d+) @@"
        matchres = re.match(regex, first_line)
        if matchres:
            startline, rangelen, startpos, endpos = matchres.groups()
            self.avail = True
        else:
            self.avail = False
            return
        startline, rangelen = int(startline) - 1, int(rangelen)
        endline = startline + rangelen
        self.prevlines = oldflines[:startline]
        self.afterlines = oldflines[endline:]
        for line in difflines:
            if line.startswith("-"):
                self.lines.append(line[1:])
                self.labels.append(0)
            elif line.startswith("+"):
                self.lines.append(line[1:])
                self.labels.append(1)
            else:
                self.lines.append(line)
                self.labels.append(2)
        self.prevlines = [self.remove_space_clean(line) for line in self.prevlines]
        self.afterlines = [self.remove_space_clean(line) for line in self.afterlines]
        self.lines = [self.remove_space_clean(line) for line in self.lines]
        self.msg = self.remove_space_clean(self.msg)
        self.prevlines = [line for line in self.prevlines if len(line) > 0]
        self.afterlines = [line for line in self.afterlines if len(line) > 0]
        # print("\n".join(self.prevlines))
        # print("\n\n\n\n")
        # print("\n".join(self.lines))
        # print("\n\n\n\n")
        # print("\n".join(self.afterlines))
        # print("\n\n\n\n")
        assert len(self.lines) == len(self.labels), "Not equal length in align."
        topack = list(
            zip(
                *[
                    (line, label)
                    for line, label in zip(self.lines, self.labels)
                    if len(line) > 0
                ]
            )
        )
        if topack == []:
            self.avail = False
            return
        else:
            self.lines, self.labels = topack
        # tuple->list, convenient for later operation
        self.lines = list(self.lines)
        self.labels = list(self.labels)


def read_review_examples(filename, data_num=-1, tokenizer=None):
    """Read examples from filename."""
    examples = []
    idx = 0
    with open(filename) as f:
        for line in f:
            try:
                js = json.loads(line.strip())
            except:
                print("Error during reading json data.")
                continue
            maxl = 200
            if "y" not in js:
                js["y"] = 0
            if "msg" in js and len(js["msg"]) > 0:
                js["y"] = 1
            example = ReviewExample(
                        idx=idx,
                        oldf=js["oldf"],
                        diff=js["patch"],
                        msg=js["msg"] if "msg" in js else "",
                        cmtid=js["cmtid"] if "cmtid" in js else "",
                        max_len=maxl,
                        y=js["y"]
                    )
            if example.avail:
                examples.append(example)
                idx += 1
                if idx == data_num:
                    break
            else:
                # print(f"Passing {idx} because of invalid diff.")
                idx += 1 
                if idx == data_num:
                    break
                
    return examples


def read_jsonl(path):
    data = []
    with open(path) as f:
        for line in f:
            try:
                js = json.loads(line.strip())
            except:
                print("Error during reading json data.")
                continue
            data.append(js)
    return data