Spaces:
Running
Running
File size: 12,605 Bytes
66fca56 0db8b33 66fca56 0db8b33 ec1f977 0db8b33 66fca56 ec1f977 6a1dc4f ec1f977 66fca56 ec1f977 66fca56 ec1f977 66fca56 ec1f977 66fca56 0db8b33 1ea9b6e 0db8b33 66fca56 ec1f977 66fca56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
os.environ['TOKENIZERS_PARALLELISM'] = 'false' # Disable tokenizer parallelism
from flask import Flask, request, jsonify
from flask_cors import CORS
import numpy as np
import json
import traceback
import logging # Added for background task logging
import threading # Added for background task
import time # Added for background task
import schedule # Added for background task
# --- Import the daily update function ---
try:
from daily_update import main as run_daily_update
# Set up logging for the daily_update module if it uses logging
# logging.getLogger('daily_update').setLevel(logging.INFO) # Example
except ImportError:
logging.error("Failed to import daily_update.py. The daily update task will not run.")
run_daily_update = None # Define as None if import fails
# ---
app = Flask(__name__) # Create app object FIRST
# Define the base persistent storage path (must match other scripts)
PERSISTENT_STORAGE_PATH = "/data" # <-- ADJUST IF YOUR PATH IS DIFFERENT
# Configure Flask app logging (optional but recommended)
# app.logger.setLevel(logging.INFO)
# Allow requests from the Vercel frontend and localhost for development
CORS(app, origins=["http://127.0.0.1:3000", "http://localhost:3000", "https://rag-huggingface.vercel.app"], supports_credentials=True)
# --- Configuration ---
# Point to index/map files in persistent storage
INDEX_FILE = os.path.join(PERSISTENT_STORAGE_PATH, "index.faiss")
MAP_FILE = os.path.join(PERSISTENT_STORAGE_PATH, "index_to_metadata.pkl")
EMBEDDING_MODEL = 'all-mpnet-base-v2'
# Point to model data JSON in persistent storage
MODEL_DATA_DIR = os.path.join(PERSISTENT_STORAGE_PATH, "model_data_json")
# ---
# --- Global variables for resources ---
faiss = None
pickle = None
index = None
index_to_metadata = None
model = None
SentenceTransformer = None # Keep track of the imported class
RESOURCES_LOADED = False
# ---
def load_resources():
"""Loads all necessary resources (model, index, map) only once."""
global faiss, pickle, index, index_to_metadata, model, SentenceTransformer, RESOURCES_LOADED
if RESOURCES_LOADED: # Prevent re-loading
print("Resources already loaded.")
return
print("Loading resources...")
try:
# Deferred Import of Faiss and Pickle inside the function
print("Importing Faiss and Pickle...")
import faiss as faiss_local
import pickle as pickle_local
faiss = faiss_local
pickle = pickle_local
print("Faiss and Pickle imported successfully.")
# Load Sentence Transformer Model
print(f"Importing SentenceTransformer and loading model: {EMBEDDING_MODEL}")
from sentence_transformers import SentenceTransformer as SentenceTransformer_local
SentenceTransformer = SentenceTransformer_local # Store the class globally if needed elsewhere
model_local = SentenceTransformer(EMBEDDING_MODEL)
model = model_local # Assign to global variable
print("Sentence transformer model loaded successfully.")
# Load FAISS Index
# index_path = os.path.join(os.path.dirname(__file__), INDEX_FILE) # Old path
index_path = INDEX_FILE # Use configured path
print(f"Loading FAISS index from: {index_path}")
if not os.path.exists(index_path):
raise FileNotFoundError(f"FAISS index file not found at {index_path}")
index_local = faiss.read_index(index_path)
index = index_local # Assign to global variable
print("FAISS index loaded successfully.")
# Load Index-to-Metadata Map
# map_path = os.path.join(os.path.dirname(__file__), MAP_FILE) # Old path
map_path = MAP_FILE # Use configured path
print(f"Loading index-to-Metadata map from: {map_path}")
if not os.path.exists(map_path):
raise FileNotFoundError(f"Metadata map file not found at {map_path}")
with open(map_path, 'rb') as f:
index_to_metadata_local = pickle.load(f)
index_to_metadata = index_to_metadata_local # Assign to global variable
print("Index-to-Metadata map loaded successfully.")
print("All resources loaded successfully.")
RESOURCES_LOADED = True
except FileNotFoundError as fnf_error:
print(f"Error: {fnf_error}")
print(f"Please ensure {os.path.basename(INDEX_FILE)} and {os.path.basename(MAP_FILE)} exist in the persistent storage directory ({PERSISTENT_STORAGE_PATH}).")
print("You might need to run the update process first or manually place initial files there.")
RESOURCES_LOADED = False # Keep as False
except ImportError as import_error:
print(f"Import Error loading resources: {import_error}")
traceback.print_exc()
RESOURCES_LOADED = False
except Exception as e:
print(f"Unexpected error loading resources: {e}")
traceback.print_exc() # Print full traceback for loading errors
RESOURCES_LOADED = False # Keep as False
# --- Load resources when the module is imported ---
# This should be executed only once by Gunicorn when it imports 'app:app'
load_resources()
# ---
# --- Background Update Task ---
UPDATE_INTERVAL_HOURS = 24 # Check every 24 hours
UPDATE_TIME = "02:00" # Time to run the update (24-hour format)
def run_update_task():
"""Wrapper function to run the daily update and handle errors."""
if run_daily_update is None:
logging.warning("run_daily_update function not available (import failed). Skipping task.")
return
logging.info(f"Background task: Starting daily update check (scheduled for {UPDATE_TIME})...")
try:
# Make sure the DEEPSEEK_API_KEY is set before running
if not os.getenv("DEEPSEEK_API_KEY"):
logging.error("Background task: DEEPSEEK_API_KEY not set. Daily update cannot run.")
return # Don't run if key is missing
run_daily_update() # Call the main function from daily_update.py
logging.info("Background task: Daily update process finished.")
except Exception as e:
logging.error(f"Background task: Error during daily update execution: {e}")
logging.error(traceback.format_exc())
def background_scheduler():
"""Runs the scheduler loop in a background thread."""
logging.info(f"Background scheduler started. Will run update task daily around {UPDATE_TIME}.")
if run_daily_update is None:
logging.error("Background scheduler: daily_update.py could not be imported. Scheduler will not run tasks.")
return # Stop the thread if the core function isn't available
# Schedule the job
# schedule.every(UPDATE_INTERVAL_HOURS).hours.do(run_update_task) # Alternative: run every X hours
schedule.every().day.at(UPDATE_TIME).do(run_update_task)
logging.info(f"Scheduled daily update task for {UPDATE_TIME}.")
# --- Run once immediately on startup ---
logging.info("Background task: Running initial update check on startup...")
run_update_task() # Call the task function directly
logging.info("Background task: Initial update check finished.")
# ---
while True:
schedule.run_pending()
time.sleep(60) # Check every 60 seconds if a task is due
# Start the background scheduler thread only if this is the main process
# This check helps prevent duplicate schedulers when using workers (like Gunicorn)
# Note: This might not be perfectly reliable with all WSGI servers/configs.
# Consider using a more robust method for ensuring single execution if needed (e.g., file lock, external process manager)
if os.environ.get("WERKZEUG_RUN_MAIN") == "true" or os.environ.get("FLASK_ENV") != "development":
# Start only in main Werkzeug process OR if not in Flask development mode (like production with Gunicorn)
# Check if the function is available before starting thread
if run_daily_update is not None:
scheduler_thread = threading.Thread(target=background_scheduler, daemon=True)
scheduler_thread.start()
logging.info("Background scheduler thread started.")
else:
logging.warning("Background scheduler thread NOT started because daily_update.py failed to import.")
else:
logging.info("Skipping background scheduler start in Werkzeug reloader process.")
# --- End Background Update Task ---
@app.route('/search', methods=['POST'])
def search():
"""Handles search requests, embedding the query and searching the FAISS index."""
# Check if resources are loaded at the beginning of the request
if not RESOURCES_LOADED:
# You could attempt to reload here, but it's often better to fail
# if the initial load failed, as something is wrong with the environment/files.
print("Error: Search request received, but resources are not loaded.")
return jsonify({"error": "Backend resources not initialized. Check server logs."}), 500
# Check for necessary components loaded by load_resources
if model is None or index is None or index_to_metadata is None or faiss is None:
print("Error: Search request received, but some core components (model, index, map, faiss) are None.")
return jsonify({"error": "Backend components inconsistency. Check server logs."}), 500
data = request.get_json()
if not data or 'query' not in data:
return jsonify({"error": "Missing 'query' in request body"}), 400
query = data['query']
top_k = data.get('top_k', 10) # Default to top 10
try:
# Embed the query
# Ensure model is not None (already checked above, but good practice)
if model is None:
return jsonify({"error": "Model not loaded."}), 500
query_embedding = model.encode([query], convert_to_numpy=True).astype('float32')
# Search the index
# Ensure index is not None
if index is None:
return jsonify({"error": "Index not loaded."}), 500
distances, indices = index.search(query_embedding, top_k)
# Get the results with full metadata
results = []
if indices.size > 0: # Check if search returned any indices
# Ensure index_to_metadata is not None
if index_to_metadata is None:
print("Error: index_to_metadata is None during result processing.")
return jsonify({"error": "Metadata map not loaded."}), 500
for i in range(len(indices[0])):
idx = indices[0][i]
dist = distances[0][i]
# Check index validity MORE robustly
if idx < 0 or idx not in index_to_metadata:
print(f"Warning: Index {idx} out of bounds or not found in metadata mapping.")
continue # Skip this result
metadata = index_to_metadata[idx].copy() # Copy to avoid mutating original
metadata['distance'] = float(dist) # Add distance to the result dict
# --- Add description from model_data_json ---
model_id = metadata.get('model_id')
description = None
# Use the globally defined MODEL_DATA_DIR pointing to persistent storage
if model_id and MODEL_DATA_DIR:
filename = model_id.replace('/', '_') + '.json'
filepath = os.path.join(MODEL_DATA_DIR, filename)
if os.path.exists(filepath):
try:
with open(filepath, 'r', encoding='utf-8') as f:
model_data = json.load(f)
description = model_data.get('description')
except Exception as e:
print(f"Error reading description file {filepath}: {e}")
# Keep description as None
# else: # Optional: Log if description file doesn't exist
# print(f"Description file not found: {filepath}")
metadata['description'] = description or 'No description available.'
# ---
results.append(metadata) # Append the whole metadata dict
else:
print("Warning: FAISS search returned empty indices.")
return jsonify({"results": results})
except Exception as e:
print(f"Error during search: {e}")
traceback.print_exc() # Print full traceback for search errors
return jsonify({"error": "An error occurred during search."}), 500
# The if __name__ == '__main__': block remains removed. |