shawnyin commited on
Commit
44baeca
Β·
verified Β·
1 Parent(s): 22eb082

Add optimize parameter example

Browse files
Files changed (1) hide show
  1. app.py +722 -369
app.py CHANGED
@@ -1,469 +1,822 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import marimo
2
 
3
- __generated_with = "0.9.2"
4
- app = marimo.App()
5
 
6
 
7
  @app.cell
8
- def __():
 
 
 
 
9
  import marimo as mo
10
 
11
- mo.md("# Welcome to marimo! πŸŒŠπŸƒ")
12
- return (mo,)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
 
15
  @app.cell
16
- def __(mo):
17
- slider = mo.ui.slider(1, 22)
18
- return (slider,)
 
 
 
 
19
 
20
 
21
  @app.cell
22
- def __(mo, slider):
23
- mo.md(
24
- f"""
25
- marimo is a **reactive** Python notebook.
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
- This means that unlike traditional notebooks, marimo notebooks **run
28
- automatically** when you modify them or
29
- interact with UI elements, like this slider: {slider}.
30
 
31
- {"##" + "πŸƒ" * slider.value}
32
- """
 
 
 
 
 
 
 
33
  )
34
- return
35
 
36
 
37
- @app.cell(hide_code=True)
38
- def __(mo):
39
- mo.accordion(
40
- {
41
- "Tip: disabling automatic execution": mo.md(
42
- rf"""
43
- marimo lets you disable automatic execution: just go into the
44
- notebook settings and set
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- "Runtime > On Cell Change" to "lazy".
47
 
48
- When the runtime is lazy, after running a cell, marimo marks its
49
- descendants as stale instead of automatically running them. The
50
- lazy runtime puts you in control over when cells are run, while
51
- still giving guarantees about the notebook state.
52
- """
53
- )
54
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  )
56
- return
57
 
 
 
 
 
 
 
 
58
 
59
- @app.cell(hide_code=True)
60
- def __(mo):
61
- mo.md(
62
- """
63
- Tip: This is a tutorial notebook. You can create your own notebooks
64
- by entering `marimo edit` at the command line.
65
- """
66
- ).callout()
67
- return
68
 
 
 
69
 
70
- @app.cell(hide_code=True)
71
- def __(mo):
72
- mo.md(
73
- """
74
- ## 1. Reactive execution
75
 
76
- A marimo notebook is made up of small blocks of Python code called
77
- cells.
 
 
 
 
 
 
 
 
 
 
 
78
 
79
- marimo reads your cells and models the dependencies among them: whenever
80
- a cell that defines a global variable is run, marimo
81
- **automatically runs** all cells that reference that variable.
82
 
83
- Reactivity keeps your program state and outputs in sync with your code,
84
- making for a dynamic programming environment that prevents bugs before they
85
- happen.
86
- """
87
- )
88
- return
89
 
90
 
91
- @app.cell(hide_code=True)
92
- def __(changed, mo):
93
- (
94
- mo.md(
95
- f"""
96
- **✨ Nice!** The value of `changed` is now {changed}.
97
-
98
- When you updated the value of the variable `changed`, marimo
99
- **reacted** by running this cell automatically, because this cell
100
- references the global variable `changed`.
101
-
102
- Reactivity ensures that your notebook state is always
103
- consistent, which is crucial for doing good science; it's also what
104
- enables marimo notebooks to double as tools and apps.
105
- """
106
- )
107
- if changed
108
- else mo.md(
109
- """
110
- **🌊 See it in action.** In the next cell, change the value of the
111
- variable `changed` to `True`, then click the run button.
112
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  )
 
 
 
 
 
 
 
 
114
  )
115
- return
116
 
117
 
118
  @app.cell
119
- def __():
120
- changed = False
121
- return (changed,)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
 
 
123
 
124
- @app.cell(hide_code=True)
125
- def __(mo):
126
- mo.accordion(
127
- {
128
- "Tip: execution order": (
129
- """
130
- The order of cells on the page has no bearing on
131
- the order in which cells are executed: marimo knows that a cell
132
- reading a variable must run after the cell that defines it. This
133
- frees you to organize your code in the way that makes the most
134
- sense for you.
135
- """
136
- )
137
- }
138
- )
139
- return
140
 
141
-
142
- @app.cell(hide_code=True)
143
- def __(mo):
144
- mo.md(
145
- """
146
- **Global names must be unique.** To enable reactivity, marimo imposes a
147
- constraint on how names appear in cells: no two cells may define the same
148
- variable.
149
- """
 
 
 
 
 
 
 
 
150
  )
151
- return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
 
154
- @app.cell(hide_code=True)
155
- def __(mo):
156
- mo.accordion(
157
- {
158
- "Tip: encapsulation": (
159
- """
160
- By encapsulating logic in functions, classes, or Python modules,
161
- you can minimize the number of global variables in your notebook.
162
- """
163
- )
164
- }
165
- )
166
- return
167
-
168
 
169
- @app.cell(hide_code=True)
170
- def __(mo):
171
- mo.accordion(
172
- {
173
- "Tip: private variables": (
174
- """
175
- Variables prefixed with an underscore are "private" to a cell, so
176
- they can be defined by multiple cells.
177
- """
178
- )
179
- }
180
  )
181
  return
182
 
183
 
184
- @app.cell(hide_code=True)
185
- def __(mo):
186
- mo.md(
187
- """
188
- ## 2. UI elements
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
- Cells can output interactive UI elements. Interacting with a UI
191
- element **automatically triggers notebook execution**: when
192
- you interact with a UI element, its value is sent back to Python, and
193
- every cell that references that element is re-run.
194
 
195
- marimo provides a library of UI elements to choose from under
196
- `marimo.ui`.
197
- """
 
 
 
198
  )
199
  return
200
 
201
 
202
  @app.cell
203
- def __(mo):
204
- mo.md("""**🌊 Some UI elements.** Try interacting with the below elements.""")
205
- return
 
206
 
207
 
208
  @app.cell
209
- def __(mo):
210
- icon = mo.ui.dropdown(["πŸƒ", "🌊", "✨"], value="πŸƒ")
211
- return (icon,)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
 
213
 
214
  @app.cell
215
- def __(icon, mo):
216
- repetitions = mo.ui.slider(1, 16, label=f"number of {icon.value}: ")
217
- return (repetitions,)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
 
219
 
220
  @app.cell
221
- def __(icon, repetitions):
222
- icon, repetitions
223
- return
 
 
 
 
224
 
225
 
226
  @app.cell
227
- def __(icon, mo, repetitions):
228
- mo.md("# " + icon.value * repetitions.value)
 
229
  return
230
 
231
 
232
- @app.cell(hide_code=True)
233
- def __(mo):
234
- mo.md(
235
- """
236
- ## 3. marimo is just Python
237
-
238
- marimo cells parse Python (and only Python), and marimo notebooks are
239
- stored as pure Python files β€” outputs are _not_ included. There's no
240
- magical syntax.
241
-
242
- The Python files generated by marimo are:
243
-
244
- - easily versioned with git, yielding minimal diffs
245
- - legible for both humans and machines
246
- - formattable using your tool of choice,
247
- - usable as Python scripts, with UI elements taking their default
248
- values, and
249
- - importable by other modules (more on that in the future).
250
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
  )
252
- return
253
 
254
 
255
- @app.cell(hide_code=True)
256
- def __(mo):
257
- mo.md(
258
- """
259
- ## 4. Running notebooks as apps
 
 
 
 
 
260
 
261
- marimo notebooks can double as apps. Click the app window icon in the
262
- bottom-right to see this notebook in "app view."
263
 
264
- Serve a notebook as an app with `marimo run` at the command-line.
265
- Of course, you can use marimo just to level-up your
266
- notebooking, without ever making apps.
267
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
  )
269
- return
270
-
271
 
272
- @app.cell(hide_code=True)
273
- def __(mo):
274
- mo.md(
275
- """
276
- ## 5. The `marimo` command-line tool
277
 
278
- **Creating and editing notebooks.** Use
279
-
280
- ```
281
- marimo edit
282
- ```
283
-
284
- in a terminal to start the marimo notebook server. From here
285
- you can create a new notebook or edit existing ones.
 
 
 
 
 
 
 
 
 
 
 
 
 
286
 
287
 
288
- **Running as apps.** Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
 
290
- ```
291
- marimo run notebook.py
292
- ```
293
 
294
- to start a webserver that serves your notebook as an app in read-only mode,
295
- with code cells hidden.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
 
297
- **Convert a Jupyter notebook.** Convert a Jupyter notebook to a marimo
298
- notebook using `marimo convert`:
299
 
300
- ```
301
- marimo convert your_notebook.ipynb > your_app.py
302
- ```
303
 
304
- **Tutorials.** marimo comes packaged with tutorials:
 
 
 
305
 
306
- - `dataflow`: more on marimo's automatic execution
307
- - `ui`: how to use UI elements
308
- - `markdown`: how to write markdown, with interpolated values and
309
- LaTeX
310
- - `plots`: how plotting works in marimo
311
- - `sql`: how to use SQL
312
- - `layout`: layout elements in marimo
313
- - `fileformat`: how marimo's file format works
314
- - `markdown-format`: for using `.md` files in marimo
315
- - `for-jupyter-users`: if you are coming from Jupyter
316
 
317
- Start a tutorial with `marimo tutorial`; for example,
 
 
 
318
 
319
- ```
320
- marimo tutorial dataflow
321
- ```
322
 
323
- In addition to tutorials, we have examples in our
324
- [our GitHub repo](https://www.github.com/marimo-team/marimo/tree/main/examples).
325
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326
  )
327
- return
328
 
329
 
330
- @app.cell(hide_code=True)
331
- def __(mo):
332
- mo.md(
333
- """
334
- ## 6. The marimo editor
335
 
336
- Here are some tips to help you get started with the marimo editor.
337
- """
338
- )
339
- return
340
 
341
 
342
  @app.cell
343
- def __(mo, tips):
344
- mo.accordion(tips)
345
- return
346
-
347
-
348
- @app.cell(hide_code=True)
349
- def __(mo):
350
- mo.md("""## Finally, a fun fact""")
351
- return
352
 
353
 
354
- @app.cell(hide_code=True)
355
- def __(mo):
356
- mo.md(
357
- """
358
- The name "marimo" is a reference to a type of algae that, under
359
- the right conditions, clumps together to form a small sphere
360
- called a "marimo moss ball". Made of just strands of algae, these
361
- beloved assemblages are greater than the sum of their parts.
362
- """
363
  )
364
- return
365
-
366
-
367
- @app.cell(hide_code=True)
368
- def __():
369
- tips = {
370
- "Saving": (
371
- """
372
- **Saving**
373
-
374
- - _Name_ your app using the box at the top of the screen, or
375
- with `Ctrl/Cmd+s`. You can also create a named app at the
376
- command line, e.g., `marimo edit app_name.py`.
377
-
378
- - _Save_ by clicking the save icon on the bottom right, or by
379
- inputting `Ctrl/Cmd+s`. By default marimo is configured
380
- to autosave.
381
- """
382
- ),
383
- "Running": (
384
- """
385
- 1. _Run a cell_ by clicking the play ( β–· ) button on the top
386
- right of a cell, or by inputting `Ctrl/Cmd+Enter`.
387
-
388
- 2. _Run a stale cell_ by clicking the yellow run button on the
389
- right of the cell, or by inputting `Ctrl/Cmd+Enter`. A cell is
390
- stale when its code has been modified but not run.
391
-
392
- 3. _Run all stale cells_ by clicking the play ( β–· ) button on
393
- the bottom right of the screen, or input `Ctrl/Cmd+Shift+r`.
394
- """
395
- ),
396
- "Console Output": (
397
- """
398
- Console output (e.g., `print()` statements) is shown below a
399
- cell.
400
- """
401
- ),
402
- "Creating, Moving, and Deleting Cells": (
403
- """
404
- 1. _Create_ a new cell above or below a given one by clicking
405
- the plus button to the left of the cell, which appears on
406
- mouse hover.
407
-
408
- 2. _Move_ a cell up or down by dragging on the handle to the
409
- right of the cell, which appears on mouse hover.
410
-
411
- 3. _Delete_ a cell by clicking the trash bin icon. Bring it
412
- back by clicking the undo button on the bottom right of the
413
- screen, or with `Ctrl/Cmd+Shift+z`.
414
- """
415
- ),
416
- "Disabling Automatic Execution": (
417
- """
418
- Via the notebook settings (gear icon) or footer panel, you
419
- can disable automatic execution. This is helpful when
420
- working with expensive notebooks or notebooks that have
421
- side-effects like database transactions.
422
- """
423
- ),
424
- "Disabling Cells": (
425
- """
426
- You can disable a cell via the cell context menu.
427
- marimo will never run a disabled cell or any cells that depend on it.
428
- This can help prevent accidental execution of expensive computations
429
- when editing a notebook.
430
- """
431
- ),
432
- "Code Folding": (
433
- """
434
- You can collapse or fold the code in a cell by clicking the arrow
435
- icons in the line number column to the left, or by using keyboard
436
- shortcuts.
437
-
438
- Use the command palette (`Ctrl/Cmd+k`) or a keyboard shortcut to
439
- quickly fold or unfold all cells.
440
- """
441
- ),
442
- "Code Formatting": (
443
- """
444
- If you have [ruff](https://github.com/astral-sh/ruff) installed,
445
- you can format a cell with the keyboard shortcut `Ctrl/Cmd+b`.
446
- """
447
- ),
448
- "Command Palette": (
449
- """
450
- Use `Ctrl/Cmd+k` to open the command palette.
451
- """
452
- ),
453
- "Keyboard Shortcuts": (
454
- """
455
- Open the notebook menu (top-right) or input `Ctrl/Cmd+Shift+h` to
456
- view a list of all keyboard shortcuts.
457
- """
458
- ),
459
- "Configuration": (
460
- """
461
- Configure the editor by clicking the gears icon near the top-right
462
- of the screen.
463
- """
464
- ),
465
- }
466
- return (tips,)
467
 
468
 
469
  if __name__ == "__main__":
 
1
+ """
2
+ Copyright (c) 2024, UChicago Argonne, LLC. All rights reserved.
3
+
4
+ Copyright 2024. UChicago Argonne, LLC. This software was produced
5
+ under U.S. Government contract DE-AC02-06CH11357 for Argonne National
6
+ Laboratory (ANL), which is operated by UChicago Argonne, LLC for the
7
+ U.S. Department of Energy. The U.S. Government has rights to use,
8
+ reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
9
+ UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
10
+ ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
11
+ modified to produce derivative works, such modified software should
12
+ be clearly marked, so as not to confuse it with the version available
13
+ from ANL.
14
+
15
+ Additionally, redistribution and use in source and binary forms, with
16
+ or without modification, are permitted provided that the following
17
+ conditions are met:
18
+
19
+ * Redistributions of source code must retain the above copyright
20
+ notice, this list of conditions and the following disclaimer.
21
+
22
+ * Redistributions in binary form must reproduce the above copyright
23
+ notice, this list of conditions and the following disclaimer in
24
+ the documentation and/or other materials provided with the
25
+ distribution.
26
+
27
+ * Neither the name of UChicago Argonne, LLC, Argonne National
28
+ Laboratory, ANL, the U.S. Government, nor the names of its
29
+ contributors may be used to endorse or promote products derived
30
+ from this software without specific prior written permission.
31
+
32
+ THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS
33
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35
+ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago
36
+ Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37
+ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38
+ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
39
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
40
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41
+ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
42
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
43
+ POSSIBILITY OF SUCH DAMAGE.
44
+ """
45
+
46
+ ### Initial Author <2024>: Xiangyu Yin
47
+
48
  import marimo
49
 
50
+ __generated_with = "0.10.2"
51
+ app = marimo.App(width="medium")
52
 
53
 
54
  @app.cell
55
+ def _(__file__):
56
+ import sys
57
+ from math import floor, ceil, acos, pi
58
+ import numpy as np
59
+ import plotly.express as px
60
  import marimo as mo
61
 
62
+ from mapstorch.io import read_dataset
63
+ from mapstorch.util import PeriodicTableWidget
64
+ from mapstorch.default import (
65
+ default_fitting_elems,
66
+ unsupported_elements,
67
+ supported_elements_mapping,
68
+ )
69
+
70
+ return (
71
+ PeriodicTableWidget,
72
+ acos,
73
+ ceil,
74
+ default_fitting_elems,
75
+ floor,
76
+ mo,
77
+ np,
78
+ pi,
79
+ px,
80
+ read_dataset,
81
+ supported_elements_mapping,
82
+ sys,
83
+ unsupported_elements,
84
+ )
85
 
86
 
87
  @app.cell
88
+ def _(mo):
89
+ dataset = mo.ui.file_browser(
90
+ filetypes=[".h5", ".h50", ".h51", ".h52", ".h53", ".h54", ".h55"],
91
+ multiple=False,
92
+ )
93
+ mo.md(f"Please select the dataset file (h5 file) \n{dataset}")
94
+ return (dataset,)
95
 
96
 
97
  @app.cell
98
+ def _(mo):
99
+ int_spec_path = mo.ui.dropdown(
100
+ ["MAPS/int_spec", "MAPS/Spectra/Integrateds_Spectra/Spectra"],
101
+ value="MAPS/int_spec",
102
+ label="Integrated spectrum location",
103
+ )
104
+ elem_path = mo.ui.dropdown(
105
+ ["MAPS/channel_names"],
106
+ value="MAPS/channel_names",
107
+ label="Energy channel names location",
108
+ )
109
+ dataset_button = mo.ui.run_button(label="Load")
110
+ mo.hstack(
111
+ [int_spec_path, elem_path, dataset_button], justify="start", gap=1
112
+ ).right()
113
+ return dataset_button, elem_path, int_spec_path
114
 
 
 
 
115
 
116
+ @app.cell
117
+ def _(int_spec_og, mo):
118
+ energy_range = mo.ui.range_slider(
119
+ start=0,
120
+ stop=int_spec_og.shape[-1] - 1,
121
+ step=1,
122
+ label="Energy range",
123
+ value=[50, 1450],
124
+ full_width=True,
125
  )
126
+ return (energy_range,)
127
 
128
 
129
+ @app.cell
130
+ def _(energy_range, int_spec_og, mo, peaks):
131
+ incident_energy_slider = mo.ui.slider(
132
+ start=6,
133
+ stop=18,
134
+ step=0.01,
135
+ value=12,
136
+ label="Incident Energy (keV)",
137
+ full_width=True,
138
+ )
139
+ compton_peak_value = (
140
+ (int_spec_og.shape[-1] - 1) // 2 if len(peaks) < 8 else peaks[-2]
141
+ )
142
+ compton_peak_slider = mo.ui.slider(
143
+ start=0,
144
+ stop=int_spec_og.shape[-1] - 1,
145
+ step=1,
146
+ value=compton_peak_value,
147
+ label="Compton Peak Position",
148
+ full_width=True,
149
+ )
150
+ elastic_peak_value = (
151
+ (int_spec_og.shape[-1] - 1) // 1.9 if len(peaks) < 8 else peaks[-1]
152
+ )
153
+ elastic_peak_slider = mo.ui.slider(
154
+ start=0,
155
+ stop=int_spec_og.shape[-1] - 1,
156
+ step=1,
157
+ value=elastic_peak_value,
158
+ label="Elastic Peak Position",
159
+ full_width=True,
160
+ )
161
+ mo.vstack(
162
+ [incident_energy_slider, energy_range, compton_peak_slider, elastic_peak_slider]
163
+ )
164
+ return (
165
+ compton_peak_slider,
166
+ compton_peak_value,
167
+ elastic_peak_slider,
168
+ elastic_peak_value,
169
+ incident_energy_slider,
170
+ )
171
 
 
172
 
173
+ @app.cell
174
+ def _(
175
+ compton_peak_slider,
176
+ elastic_peak_slider,
177
+ int_spec,
178
+ int_spec_log,
179
+ mo,
180
+ np,
181
+ peaks,
182
+ ):
183
+ from plotly.subplots import make_subplots
184
+ import plotly.graph_objects as go
185
+
186
+ int_spec_fig = make_subplots(rows=2, cols=1)
187
+
188
+ # Add trace for the 1D data
189
+ int_spec_fig.append_trace(
190
+ go.Scatter(
191
+ x=np.arange(len(int_spec)), y=int_spec, mode="lines", name="Photon counts"
192
+ ),
193
+ row=1,
194
+ col=1,
195
+ )
196
+ int_spec_fig.append_trace(
197
+ go.Scatter(
198
+ x=np.arange(len(int_spec)), y=int_spec_log, mode="lines", name="Log scale"
199
+ ),
200
+ row=2,
201
+ col=1,
202
+ )
203
+ int_spec_fig.append_trace(
204
+ go.Scatter(
205
+ x=peaks,
206
+ y=int_spec[peaks],
207
+ mode="markers",
208
+ marker_color="#00cc96",
209
+ showlegend=False,
210
+ ),
211
+ row=1,
212
+ col=1,
213
+ )
214
+ int_spec_fig.append_trace(
215
+ go.Scatter(
216
+ x=peaks,
217
+ y=int_spec_log[peaks],
218
+ mode="markers",
219
+ name="Peaks",
220
+ marker_color="#00cc96",
221
+ ),
222
+ row=2,
223
+ col=1,
224
  )
 
225
 
226
+ # Add a vertical line to mark a position within the range
227
+ int_spec_fig.add_vline(
228
+ x=compton_peak_slider.value, line_width=1, line_color="#ab63fa"
229
+ )
230
+ int_spec_fig.add_vline(
231
+ x=elastic_peak_slider.value, line_width=1, line_color="#ffa15a"
232
+ )
233
 
234
+ int_spec_fig.update_layout(showlegend=False)
 
 
 
 
 
 
 
 
235
 
236
+ mo.ui.plotly(int_spec_fig)
237
+ return go, int_spec_fig, make_subplots
238
 
 
 
 
 
 
239
 
240
+ @app.cell
241
+ def _(configs, elem_selection, mo, param_selection):
242
+ control_panel = mo.accordion(
243
+ {
244
+ "Elements": elem_selection.center(),
245
+ "Parameters": param_selection,
246
+ "Configs": configs,
247
+ },
248
+ multiple=True,
249
+ )
250
+ control_panel_shown = True
251
+ control_panel
252
+ return control_panel, control_panel_shown
253
 
 
 
 
254
 
255
+ @app.cell
256
+ def _(control_panel_shown, mo):
257
+ run_button = mo.ui.run_button()
258
+ run_button.right() if control_panel_shown else None
259
+ return (run_button,)
 
260
 
261
 
262
+ @app.cell
263
+ def _(
264
+ device_selection,
265
+ elem_checkboxes,
266
+ energy_range,
267
+ fit_indices_list,
268
+ init_amp_checkbox,
269
+ int_spec_og,
270
+ iter_slider,
271
+ loss_selection,
272
+ mo,
273
+ optimizer_selection,
274
+ param_checkboxes,
275
+ run_button,
276
+ use_snip_checkbox,
277
+ use_step_checkbox,
278
+ ):
279
+ mo.stop(not run_button.value)
280
+ from mapstorch.opt import fit_spec
281
+
282
+ n_iter = iter_slider.value
283
+ with mo.status.progress_bar(total=n_iter) as bar:
284
+ fitted_tensors, fitted_spec, fitted_bkg, loss_trace = fit_spec(
285
+ int_spec_og,
286
+ energy_range.value,
287
+ elements_to_fit=[k for k, v in elem_checkboxes.items() if v.value],
288
+ fitting_params=[k for k, v in param_checkboxes.items() if v[0].value],
289
+ init_param_vals={
290
+ k: float(v[2].value) for k, v in param_checkboxes.items() if v[0].value
291
+ },
292
+ fixed_param_vals={
293
+ k: float(v[2].value)
294
+ for k, v in param_checkboxes.items()
295
+ if v[0].value and v[1].value
296
+ },
297
+ indices=fit_indices_list[-1],
298
+ tune_params=True,
299
+ init_amp=init_amp_checkbox.value,
300
+ use_snip=use_snip_checkbox.value,
301
+ use_step=use_step_checkbox.value,
302
+ use_tail=False,
303
+ loss=loss_selection.value,
304
+ optimizer=optimizer_selection.value,
305
+ n_iter=n_iter,
306
+ progress_bar=False,
307
+ device=device_selection.value,
308
+ status_updator=bar,
309
  )
310
+ return (
311
+ bar,
312
+ fit_spec,
313
+ fitted_bkg,
314
+ fitted_spec,
315
+ fitted_tensors,
316
+ loss_trace,
317
+ n_iter,
318
  )
 
319
 
320
 
321
  @app.cell
322
+ def _(fitted_bkg, fitted_spec, go, int_spec, make_subplots, mo, np, px):
323
+ fit_labels = ["experiment", "background", "fitted"]
324
+ fit_fig = make_subplots(rows=2, cols=1)
325
+ spec_x = np.linspace(0, int_spec.size - 1, int_spec.size)
326
+
327
+ for i, spec in enumerate([int_spec, fitted_bkg, fitted_spec + fitted_bkg]):
328
+ fit_fig.add_trace(
329
+ go.Scatter(
330
+ x=spec_x,
331
+ y=spec,
332
+ mode="lines",
333
+ name=fit_labels[i],
334
+ line=dict(color=px.colors.qualitative.Plotly[i]),
335
+ ),
336
+ row=1,
337
+ col=1,
338
+ )
339
+ spec_log = np.log10(np.clip(spec, 0, None) + 1)
340
+ fit_fig.add_trace(
341
+ go.Scatter(
342
+ x=spec_x,
343
+ y=spec_log,
344
+ mode="lines",
345
+ showlegend=False,
346
+ line=dict(color=px.colors.qualitative.Plotly[i]),
347
+ ),
348
+ row=2,
349
+ col=1,
350
+ )
351
 
352
+ mo.ui.plotly(fit_fig)
353
+ return fit_fig, fit_labels, i, spec, spec_log, spec_x
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355
 
356
+ @app.cell
357
+ def _(elem_checkboxes, fitted_tensors, go, make_subplots, mo):
358
+ target_elems = [k for k, v in elem_checkboxes.items() if v.value]
359
+ amps = {p: fitted_tensors[p].item() for p in target_elems}
360
+ amps = dict(sorted(amps.items(), key=lambda item: item[1]))
361
+
362
+ amp_fig = make_subplots(rows=1, cols=2)
363
+
364
+ amp_fig.add_trace(
365
+ go.Bar(
366
+ x=[10**v for v in amps.values()],
367
+ y=list(amps.keys()),
368
+ orientation="h",
369
+ name="Photon counts",
370
+ ),
371
+ row=1,
372
+ col=1,
373
  )
374
+ amp_fig.add_trace(go.Bar(x=list(amps.values()), name="Log scale"), row=1, col=2)
375
+ amp_fig.update_yaxes(showticklabels=False, row=1, col=2)
376
+ amp_fig.update_layout(showlegend=False)
377
+
378
+ results_shown = True
379
+
380
+ mo.ui.plotly(amp_fig)
381
+ return amp_fig, amps, results_shown, target_elems
382
+
383
+
384
+ # @app.cell
385
+ # def _(
386
+ # confirm_range_button,
387
+ # energy_level_slider,
388
+ # focus_target_switch,
389
+ # mo,
390
+ # range_fig,
391
+ # results_shown,
392
+ # ):
393
+ # (
394
+ # mo.accordion(
395
+ # {
396
+ # "Target ranges": mo.vstack(
397
+ # [
398
+ # range_fig,
399
+ # mo.hstack(
400
+ # [
401
+ # focus_target_switch,
402
+ # energy_level_slider,
403
+ # confirm_range_button,
404
+ # ]
405
+ # ),
406
+ # ]
407
+ # )
408
+ # }
409
+ # )
410
+ # if results_shown
411
+ # else None
412
+ # )
413
+ # return
414
 
415
 
416
+ @app.cell
417
+ def _(confirm_range_button, elem_peak_indices, fit_indices_list, mo):
418
+ mo.stop(not confirm_range_button.value)
 
 
 
 
 
 
 
 
 
 
 
419
 
420
+ fit_indices_list[-1] = elem_peak_indices
421
+ mo.callout(
422
+ "Target ranges have been updated. Please select parameters to re-run the fitting process.",
423
+ kind="success",
 
 
 
 
 
 
 
424
  )
425
  return
426
 
427
 
428
+ @app.cell
429
+ def _(dataset, elem_checkboxes, fitted_tensors, mo, params_record):
430
+ import pandas as pd
431
+ import datetime
432
+
433
+ for par, l in params_record.items():
434
+ if par == "elements":
435
+ l.append(",".join([k for k, v in elem_checkboxes.items() if v.value]))
436
+ else:
437
+ l.append(fitted_tensors[par].item())
438
+ today = datetime.date.today()
439
+ today_string = today.strftime("%Y-%m-%d")
440
+ table_label = dataset.value[0].name + " parameter tuning record " + today_string
441
+ params_table = mo.ui.table(
442
+ pd.DataFrame(params_record),
443
+ selection="single",
444
+ label=table_label,
445
+ show_download=False,
446
+ )
447
+ params_table
448
+ return (
449
+ datetime,
450
+ l,
451
+ par,
452
+ params_table,
453
+ pd,
454
+ table_label,
455
+ today,
456
+ today_string,
457
+ )
458
 
 
 
 
 
459
 
460
+ @app.cell
461
+ def _(load_params_button, mo, params_table, save_params_button):
462
+ (
463
+ mo.hstack([save_params_button, load_params_button]).right()
464
+ if len(params_table.value) > 0
465
+ else None
466
  )
467
  return
468
 
469
 
470
  @app.cell
471
+ def _(mo):
472
+ load_params_button = mo.ui.button(label="Load selected parameters and re-run")
473
+ save_params_button = mo.ui.run_button(label="Generate override params file")
474
+ return load_params_button, save_params_button
475
 
476
 
477
  @app.cell
478
+ def _(mo, params_table, save_params_button):
479
+ mo.stop(not save_params_button.value)
480
+ from mapstorch.io import write_override_params_file
481
+
482
+ write_override_params_file(
483
+ "maps_fit_parameters_override.txt",
484
+ param_values={
485
+ "COHERENT_SCT_ENERGY": params_table.value.iloc[0][
486
+ "COHERENT_SCT_ENERGY"
487
+ ].item(),
488
+ "ENERGY_OFFSET": params_table.value.iloc[0]["ENERGY_OFFSET"].item(),
489
+ "ENERGY_SLOPE": params_table.value.iloc[0]["ENERGY_SLOPE"].item(),
490
+ "ENERGY_QUADRATIC": params_table.value.iloc[0]["ENERGY_QUADRATIC"].item(),
491
+ "COMPTON_ANGLE": params_table.value.iloc[0]["COMPTON_ANGLE"].item(),
492
+ "COMPTON_FWHM_CORR": params_table.value.iloc[0]["COMPTON_FWHM_CORR"].item(),
493
+ "COMPTON_HI_F_TAIL": params_table.value.iloc[0]["COMPTON_HI_F_TAIL"].item(),
494
+ "COMPTON_F_TAIL": params_table.value.iloc[0]["COMPTON_F_TAIL"].item(),
495
+ "FWHM_FANOPRIME": params_table.value.iloc[0]["FWHM_FANOPRIME"].item(),
496
+ "FWHM_OFFSET": params_table.value.iloc[0]["FWHM_OFFSET"].item(),
497
+ "F_TAIL_OFFSET": params_table.value.iloc[0]["F_TAIL_OFFSET"].item(),
498
+ "KB_F_TAIL_OFFSET": params_table.value.iloc[0]["KB_F_TAIL_OFFSET"].item(),
499
+ },
500
+ elements=params_table.value.iloc[0]["elements"].split(","),
501
+ )
502
+ return (write_override_params_file,)
503
 
504
 
505
  @app.cell
506
+ def _(
507
+ elem_peak_shapes,
508
+ fit_labels,
509
+ fitted_bkg,
510
+ fitted_spec,
511
+ focus_target_switch,
512
+ go,
513
+ int_spec,
514
+ make_subplots,
515
+ np,
516
+ px,
517
+ spec_x,
518
+ ):
519
+ range_fig = make_subplots(rows=2, cols=1)
520
+
521
+ for iii, specc in enumerate([int_spec, fitted_bkg, fitted_spec + fitted_bkg]):
522
+ range_fig.add_trace(
523
+ go.Scatter(
524
+ x=spec_x,
525
+ y=specc,
526
+ mode="lines",
527
+ name=fit_labels[iii],
528
+ line=dict(color=px.colors.qualitative.Plotly[iii]),
529
+ ),
530
+ row=1,
531
+ col=1,
532
+ )
533
+ specc_log = np.log10(np.clip(specc, 0, None) + 1)
534
+ range_fig.add_trace(
535
+ go.Scatter(
536
+ x=spec_x,
537
+ y=specc_log,
538
+ mode="lines",
539
+ showlegend=False,
540
+ line=dict(color=px.colors.qualitative.Plotly[iii]),
541
+ ),
542
+ row=2,
543
+ col=1,
544
+ )
545
+
546
+ if focus_target_switch.value:
547
+ range_fig.update_layout(shapes=elem_peak_shapes, overwrite=True)
548
+ return iii, range_fig, specc, specc_log
549
 
550
 
551
  @app.cell
552
+ def _(mo):
553
+ focus_target_switch = mo.ui.switch(label="Focus on target elements", value=False)
554
+ energy_level_slider = mo.ui.slider(
555
+ start=1, stop=6, step=1, value=1, label="Energy levels"
556
+ )
557
+ confirm_range_button = mo.ui.run_button(label="Load target ranges")
558
+ return confirm_range_button, energy_level_slider, focus_target_switch
559
 
560
 
561
  @app.cell
562
+ def _(fit_indices_list, focus_target_switch):
563
+ if not focus_target_switch.value:
564
+ fit_indices_list[-1] = None
565
  return
566
 
567
 
568
+ @app.cell
569
+ def _(elem_checkboxes, energy_level_slider, energy_range, fitted_tensors):
570
+ from mapstorch.util import get_peak_ranges
571
+
572
+ plot_elems = [k for k, v in elem_checkboxes.items() if v.value]
573
+ elem_peak_indices = []
574
+ elem_peak_shapes = []
575
+ for ii, ee in enumerate(plot_elems):
576
+ peak_rg = get_peak_ranges(
577
+ [ee],
578
+ fitted_tensors["COHERENT_SCT_ENERGY"].item(),
579
+ fitted_tensors["COMPTON_ANGLE"].item(),
580
+ fitted_tensors["ENERGY_OFFSET"].item(),
581
+ fitted_tensors["ENERGY_SLOPE"].item(),
582
+ fitted_tensors["ENERGY_QUADRATIC"].item(),
583
+ energy_range.value,
584
+ )
585
+ alpha = 0.2
586
+ for p_n, r in peak_rg.items():
587
+ if (
588
+ p_n in ["COMPTON_AMPLITUDE", "COHERENT_SCT_AMPLITUDE"]
589
+ or int(p_n[-1]) < energy_level_slider.value
590
+ ):
591
+ elem_peak_indices += list(range(*r))
592
+ elem_peak_shapes.append(
593
+ dict(
594
+ type="rect",
595
+ x0=r[0],
596
+ x1=r[1],
597
+ y0=0,
598
+ y1=1,
599
+ xref="x",
600
+ yref="paper",
601
+ fillcolor="yellow",
602
+ opacity=alpha,
603
+ layer="below",
604
+ line_width=0,
605
+ )
606
+ )
607
+ return (
608
+ alpha,
609
+ ee,
610
+ elem_peak_indices,
611
+ elem_peak_shapes,
612
+ get_peak_ranges,
613
+ ii,
614
+ p_n,
615
+ peak_rg,
616
+ plot_elems,
617
+ r,
618
  )
 
619
 
620
 
621
+ @app.cell
622
+ def _(param_checkbox_vals, param_default_vals, params_table):
623
+ if len(params_table.value) > 0:
624
+ for pp in params_table.value:
625
+ if pp in param_checkbox_vals:
626
+ param_checkbox_vals[pp] = float(params_table.value[pp].item())
627
+ else:
628
+ for pp in param_checkbox_vals:
629
+ param_checkbox_vals[pp] = float(param_default_vals[pp])
630
+ return (pp,)
631
 
 
 
632
 
633
+ @app.cell
634
+ def _(
635
+ PeriodicTableWidget,
636
+ default_fitting_elems,
637
+ elems,
638
+ mo,
639
+ unsupported_elements,
640
+ ):
641
+ initial_selected_elems = set()
642
+ for e in default_fitting_elems:
643
+ if e in elems and not e in ["COHERENT_SCT_AMPLITUDE", "COMPTON_AMPLITUDE"]:
644
+ initial_selected_elems.add(e.split("_")[0])
645
+
646
+ elem_selection = mo.ui.anywidget(
647
+ PeriodicTableWidget(
648
+ states=1,
649
+ initial_selected={se: 0 for se in initial_selected_elems},
650
+ initial_disabled=unsupported_elements,
651
+ )
652
  )
653
+ return e, elem_selection, initial_selected_elems
 
654
 
 
 
 
 
 
655
 
656
+ @app.cell
657
+ def _(
658
+ default_fitting_elems,
659
+ elem_selection,
660
+ mo,
661
+ supported_elements_mapping,
662
+ ):
663
+ selected_lines = ["COHERENT_SCT_AMPLITUDE", "COMPTON_AMPLITUDE", "Si_Si"]
664
+ for select_e in elem_selection.selected_elements:
665
+ for l_ in supported_elements_mapping[select_e]:
666
+ if l_ == "K":
667
+ selected_lines.append(select_e)
668
+ else:
669
+ selected_lines.append(select_e + "_" + l_)
670
+ elem_checkboxes = {}
671
+ for edf in default_fitting_elems:
672
+ if edf in selected_lines:
673
+ elem_checkboxes[edf] = mo.ui.checkbox(label=edf, value=True)
674
+ else:
675
+ elem_checkboxes[edf] = mo.ui.checkbox(label=edf, value=False)
676
+ return edf, elem_checkboxes, l_, select_e, selected_lines
677
 
678
 
679
+ @app.cell
680
+ def _(default_fitting_params, load_params_button, mo, param_checkbox_vals):
681
+ load_params_button
682
+
683
+ param_checkboxes = {}
684
+ for p in default_fitting_params:
685
+ param_checkboxes[p] = [
686
+ mo.ui.checkbox(label=p, value=True),
687
+ mo.ui.checkbox(label="Fix"),
688
+ mo.ui.text(value=str(param_checkbox_vals[p])),
689
+ ]
690
+
691
+ param_selection = mo.vstack(
692
+ [
693
+ mo.hstack(param_checkboxes[p], justify="start", gap=0)
694
+ for p in default_fitting_params
695
+ ]
696
+ )
697
+ return p, param_checkboxes, param_selection
698
 
 
 
 
699
 
700
+ @app.cell
701
+ def _(device_list, mo):
702
+ init_amp_checkbox = mo.ui.checkbox(label="Initialize amplitudes", value=True)
703
+ use_snip_checkbox = mo.ui.checkbox(label="Use SNIP background", value=True)
704
+ use_step_checkbox = mo.ui.checkbox(label="Modify pearks with step", value=True)
705
+ model_options = mo.hstack(
706
+ [init_amp_checkbox, use_snip_checkbox, use_step_checkbox],
707
+ justify="start",
708
+ gap=5,
709
+ )
710
+ iter_slider = mo.ui.slider(
711
+ value=500, start=100, stop=3000, step=50, label="number of iterations"
712
+ )
713
+ loss_selection = mo.ui.dropdown(["mse", "l1"], value="mse", label="loss")
714
+ optimizer_selection = mo.ui.dropdown(
715
+ ["adam", "adamw"], value="adam", label="optimizer"
716
+ )
717
+ device_selection = mo.ui.dropdown(device_list, value="cpu", label="device")
718
+ opt_options = mo.hstack(
719
+ [device_selection, loss_selection, optimizer_selection, iter_slider],
720
+ justify="start",
721
+ gap=2,
722
+ )
723
+ configs = mo.vstack([model_options, opt_options])
724
+ return (
725
+ configs,
726
+ device_selection,
727
+ init_amp_checkbox,
728
+ iter_slider,
729
+ loss_selection,
730
+ model_options,
731
+ opt_options,
732
+ optimizer_selection,
733
+ use_snip_checkbox,
734
+ use_step_checkbox,
735
+ )
736
 
 
 
737
 
738
+ @app.cell
739
+ def _():
740
+ import torch
741
 
742
+ device_list = ["cpu"]
743
+ if torch.cuda.is_available():
744
+ device_list.append("cuda")
745
+ return device_list, torch
746
 
 
 
 
 
 
 
 
 
 
 
747
 
748
+ @app.cell
749
+ def _():
750
+ fit_indices_list = [None]
751
+ return (fit_indices_list,)
752
 
 
 
 
753
 
754
+ @app.cell
755
+ def _(
756
+ acos,
757
+ compton_peak_slider,
758
+ elastic_peak_slider,
759
+ incident_energy_slider,
760
+ pi,
761
+ ):
762
+ from mapstorch.default import default_param_vals, default_fitting_params
763
+ from copy import copy
764
+
765
+ coherent_sct_energy = incident_energy_slider.value
766
+ energy_slope = coherent_sct_energy / elastic_peak_slider.value
767
+ compton_energy = energy_slope * compton_peak_slider.value
768
+ try:
769
+ compton_angle = (
770
+ acos(1 - 511 * (1 / compton_energy - 1 / coherent_sct_energy)) * 180 / pi
771
+ )
772
+ except:
773
+ compton_angle = default_param_vals["COMPTON_ANGLE"]
774
+ param_default_vals = copy(default_param_vals)
775
+ param_default_vals["COHERENT_SCT_ENERGY"] = coherent_sct_energy
776
+ param_default_vals["ENERGY_SLOPE"] = energy_slope
777
+ param_default_vals["COMPTON_ANGLE"] = compton_angle
778
+ param_checkbox_vals = copy(param_default_vals)
779
+ params_record = {p: [] for p in default_fitting_params + ["elements"]}
780
+ return (
781
+ coherent_sct_energy,
782
+ compton_angle,
783
+ compton_energy,
784
+ copy,
785
+ default_fitting_params,
786
+ default_param_vals,
787
+ energy_slope,
788
+ param_checkbox_vals,
789
+ param_default_vals,
790
+ params_record,
791
  )
 
792
 
793
 
794
+ @app.cell
795
+ def _(int_spec):
796
+ from scipy.signal import find_peaks
 
 
797
 
798
+ peaks, _ = find_peaks(int_spec, prominence=int_spec.max() / 200)
799
+ return find_peaks, peaks
 
 
800
 
801
 
802
  @app.cell
803
+ def _(energy_range, int_spec_og, np):
804
+ int_spec = int_spec_og[energy_range.value[0] : energy_range.value[1] + 1]
805
+ int_spec_log = np.log10(np.clip(int_spec, 0, None) + 1)
806
+ return int_spec, int_spec_log
 
 
 
 
 
807
 
808
 
809
+ @app.cell
810
+ def _(dataset, dataset_button, elem_path, int_spec_path, mo, read_dataset):
811
+ mo.stop(not dataset_button.value)
812
+ dataset_dict = read_dataset(
813
+ dataset.value[0].path,
814
+ fit_elem_key=elem_path.value,
815
+ int_spec_key=int_spec_path.value,
 
 
816
  )
817
+ int_spec_og = dataset_dict["int_spec"]
818
+ elems = dataset_dict["elems"]
819
+ return dataset_dict, elems, int_spec_og
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820
 
821
 
822
  if __name__ == "__main__":