File size: 18,092 Bytes
4fa79b0 c520a06 4fa79b0 7b8b52d 2a6a901 7b8b52d aac890c 4fa79b0 7b8b52d 4fa79b0 933da3b 4e4fbde 4fa79b0 3d3792d 0ca73c4 3d3792d 0b9f219 3d3792d 33fe23d 3d3792d 33fe23d 3d3792d 4fa79b0 3b419ac 4fa79b0 c0026de 4fa79b0 bc11ecf 4fa79b0 6db9568 c19af91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
# To show all columns and rows
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# Import data
df = pd.read_csv(f"Spotify_Youtube.csv")
# Drop unused columns
df = df.drop(['Album_type','Uri','Duration_ms'], axis=1)
# Drop duplicates & missing values
df = df.drop_duplicates()
df = df.dropna()
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
def preprocess_song_data(df):
# Drop rows missing essential Spotify audio features or title/artist
required_columns = [
'Title', 'Artist', 'Valence', 'Energy', 'Danceability',
'Tempo', 'Acousticness', 'Instrumentalness'
]
df_clean = df.dropna(subset=required_columns).copy()
# Normalize YouTube and Spotify popularity metrics
popularity_cols = ['Likes', 'Views', 'Comments', 'Stream']
for col in popularity_cols:
if col in df_clean.columns:
df_clean[col] = df_clean[col].fillna(0)
scaler = MinMaxScaler()
df_clean[popularity_cols] = scaler.fit_transform(df_clean[popularity_cols])
# Create an audio feature vector column for similarity search
audio_feature_cols = [
'Valence', 'Energy', 'Danceability', 'Tempo',
'Acousticness', 'Instrumentalness'
]
df_clean['audio_vector'] = df_clean[audio_feature_cols].values.tolist()
return df_clean, audio_feature_cols, popularity_cols
df_clean, audio_feature_cols, popularity_cols = preprocess_song_data(df)
# !pip install langchain faiss-cpu gradio
# !pip install -U langchain langchain-community
# !pip install sentence-transformers transformers
# !pip install transformers accelerate langchain
# !pip install -U langchain langchain-community
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM
from langchain.llms import HuggingFacePipeline
import torch
model_name = "deepseek-ai/deepseek-llm-7b-chat"
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
# model_name = "google/flan-t5-small"
# model_name = "MBZUAI/LaMini-Flan-T5-77M"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto",
offload_folder="offload"
)
hf_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=300
)
llm = HuggingFacePipeline(pipeline=hf_pipeline)
import re, json
def parse_user_input(user_input):
prompt = f"""
You are an expert music assistant trained to recommend songs for use in creative projects like ads, short films, social media videos, and campaigns.
Your job is to extract structured information from the user's input so that we can recommend songs from our database based on Spotify audio features and YouTube metadata.
Only return the following fields in JSON format:
- "mood": overall emotion (e.g., sad, happy, dramatic)
- "context": what kind of scene or use (e.g., wedding, breakup scene, brand ad)
- "preference": how to sort (e.g., likes, views, popularity)
- "reference_song": name of a song the user wants similar songs to
- "genre": intended musical style (e.g., acoustic, pop, ambient)
- "instrumental": 'yes' if vocals aren't needed, otherwise 'no'
- "tempo": slow / medium / fast
- "artist": if they want something from a specific artist
- "gender": if they prefer male / female vocal
- "limit": how many results to show (as a number)
{{
"mood": "...",
"context": "...",
"preference": "...",
"reference_song": "...",
"genre": "...",
"instrumental": "...",
"tempo": "...",
"artist": "...",
"gender": "...",
"limit": "..."
}}
User input: "{user_input}"
Respond ONLY with the JSON. Do not explain anything.
"""
output = llm(prompt)
print("π§ Raw LLM Output:\n", output)
try:
json_blocks = re.findall(r"\{[\s\S]*?\}", output)
json_str = json_blocks[-1] if json_blocks else "{}"
parsed = json.loads(json_str)
# Ensure limit is str of int
try:
parsed["limit"] = str(int(parsed["limit"]))
except:
parsed["limit"] = "5"
# Fill any missing keys
expected_keys = ["mood", "context", "preference", "reference_song", "genre", "instrumental", "tempo", "artist", "gender", "limit"]
for key in expected_keys:
if key not in parsed:
parsed[key] = "" if key != "limit" else "5"
except Exception as e:
print("β JSON parsing failed:", e)
parsed = {key: "" for key in expected_keys}
parsed["limit"] = "5"
return parsed
def mood_to_valence_range(mood):
mood = mood.strip().lower()
mood_map = {
"sad": (0.0, 0.3),
"melancholy": (0.2, 0.4),
"emotional": (0.3, 0.5),
"chill": (0.4, 0.6),
"nostalgic": (0.3, 0.5),
"neutral": (0.4, 0.6),
"hopeful": (0.5, 0.7),
"happy": (0.6, 0.85),
"cheerful": (0.7, 0.9),
"upbeat": (0.7, 1.0),
"energetic": (0.8, 1.0),
"romantic": (0.4, 0.7),
"heartbreak": (0.1, 0.3),
"dark": (0.0, 0.2),
"dramatic": (0.3, 0.5),
"angry": (0.0, 0.3),
"inspiring": (0.6, 0.85),
"relaxing": (0.4, 0.6),
"peaceful": (0.3, 0.5),
"epic": (0.5, 0.8)
}
# fallback: no filter
return mood_map.get(mood, (0.0, 1.0))
# !pip install gender-guesser
import gender_guesser.detector as gender
gender_detector = gender.Detector()
def infer_gender(artist_name):
try:
first_name = artist_name.split()[0]
guess = gender_detector.get_gender(first_name)
if "female" in guess: return "female"
if "male" in guess: return "male"
return "unknown"
except:
return "unknown"
df_clean["Gender"] = df_clean["Artist"].apply(infer_gender)
genre_filters = {
"pop": lambda df: (df["Danceability"] > 0.6) & (df["Energy"] > 0.5) & (df["Acousticness"] < 0.5),
"rock": lambda df: (df["Energy"] > 0.75) & (df["Acousticness"] < 0.4),
"jazz": lambda df: (df["Acousticness"] > 0.6) & (df["Instrumentalness"] > 0.5) & (df["Energy"] < 0.6),
"rnb": lambda df: (df["Danceability"] > 0.6) & (df["Speechiness"] < 0.33) & (df["Acousticness"] > 0.3),
"acoustic": lambda df: df["Acousticness"] > 0.8,
"hip hop": lambda df: (df["Speechiness"] > 0.4) & (df["Danceability"] > 0.6),
"edm": lambda df: (df["Danceability"] > 0.7) & (df["Energy"] > 0.7) & (df["Acousticness"] < 0.3),
"indie": lambda df: (df["Acousticness"] > 0.4) & (df["Energy"] < 0.6),
"dangdut": lambda df: (df["Danceability"] > 0.6) & (df["Speechiness"] < 0.4) & (df["Acousticness"] > 0.4) & (df["Tempo"].between(70, 130)),
"keroncong": lambda df: (df["Acousticness"] > 0.8) & (df["Energy"] < 0.5) & (df["Instrumentalness"] > 0.3),
}
def recommend_from_dataframe(parsed, df_clean, randomize = False):
df_filtered = df_clean.copy()
filters_applied = set()
top_n = int(parsed["limit"])
sort_col = parsed.get("preference", "Likes") or "Likes"
if sort_col not in df_clean.columns:
sort_col = "Likes"
print("π΅ Total songs before filtering:", len(df_filtered))
# Mood β valence
val_min, val_max = mood_to_valence_range(parsed["mood"])
df_filtered = df_filtered[(df_filtered["Valence"] >= val_min) & (df_filtered["Valence"] <= val_max)]
filters_applied.add("Valence")
print("π― Applied mood β Valence filter:", len(df_filtered))
# Genre
genre = parsed["genre"].strip().lower()
if genre not in ["", "...", "none", "n/a","null","unknown"] and genre in genre_filters and not {"Acousticness", "Energy", "Instrumentalness", "Speechiness", "Tempo"} & filters_applied:
try:
genre_mask = genre_filters[genre](df_filtered)
df_filtered = df_filtered[genre_mask]
filters_applied.update(genre_filters[genre].__code__.co_names)
print(f"π― Applied genre filter for '{genre}':", len(df_filtered))
except Exception as e:
print(f"β οΈ Failed to apply genre filter for '{genre}':", e)
else:
print("β οΈ Skipped genre filter due to value or overlap.")
# Instrumental
instrumental = parsed["instrumental"].strip().lower()
if instrumental == "yes" and "Instrumentalness" not in filters_applied:
df_filtered = df_filtered[df_filtered["Instrumentalness"] > 0.000002]
filters_applied.add("Instrumentalness")
print("π― Applied instrumental filter:", len(df_filtered))
else:
print("β οΈ Skipped instrumental filter (empty or overlap)")
# Tempo
tempo = parsed["tempo"].strip().lower()
if tempo not in ["", "...", "none", "n/a","null","unknown"] and "Tempo" not in filters_applied:
if tempo == "fast":
df_filtered = df_filtered[df_filtered["Tempo"] > 120]
elif tempo == "slow":
df_filtered = df_filtered[df_filtered["Tempo"] < 90]
elif tempo == "medium":
df_filtered = df_filtered[(df_filtered["Tempo"] >= 90) & (df_filtered["Tempo"] <= 120)]
filters_applied.add("Tempo")
print("π― Applied tempo filter:", len(df_filtered))
else:
print("β οΈ Skipped tempo filter (empty or overlap)")
# Gender
gender = parsed["gender"].strip().lower()
if gender not in ["", "...", "none", "n/a","null"]:
if "Gender" in df_filtered.columns:
df_filtered = df_filtered[df_filtered["Gender"].str.lower() == gender]
filters_applied.add("Gender")
print("π― Applied gender filter:", len(df_filtered))
else:
print("β οΈ Gender column not found β skipping.")
if randomize:
df_sorted = df_filtered.sample(frac=1).head(top_n)
else:
df_sorted = df_filtered.sort_values(by=sort_col, ascending=False).head(top_n)
print("β
Final songs returned:", len(df_sorted))
return df_sorted
from langchain.prompts import PromptTemplate
reference_song_prompt = PromptTemplate.from_template("""
You are a music expert. A user has requested songs similar to a reference song that may not exist in our database.
Your job is to describe the following audio features of the reference song as accurately as possible, based on your knowledge:
- mood (e.g. sad, energetic, chill)
- genre (e.g. pop, acoustic, EDM)
- instrumental (yes/no)
- tempo (slow, medium, fast)
- artist (who performed the song)
- gender (male, female, group, unknown)
Respond ONLY in the following JSON format:
{
"mood": "...",
"genre": "...",
"instrumental": "...",
"tempo": "...",
"artist": "...",
"gender": "..."
}
Reference song: "{reference_song}"
Return only the JSON. Do not include any other explanation.
""")
import re
import json
def recommend_by_reference_song(parsed, df_clean, audio_feature_cols, llm, reference_song_prompt):
reference_title = parsed["reference_song"].strip().lower()
top_n = int(parsed.get("limit", 5))
sort_col = parsed.get("preference", "Likes") or "Likes"
if sort_col not in df_clean.columns:
sort_col = "Likes"
# π§ Try to find exact or partial match in catalog
matches = df_clean[df_clean["Title"].str.lower().str.contains(reference_title, na=False)]
if not matches.empty:
print("β
Reference song found in catalog β using similarity-based recommendation.")
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
ref_vec = np.array(matches[audio_feature_cols].values[0]).reshape(1, -1)
all_vecs = np.array(df_clean[audio_feature_cols])
sims = cosine_similarity(ref_vec, all_vecs)[0]
df_clean["similarity"] = sims
results = df_clean[df_clean["Title"].str.lower() != reference_title]
return results.sort_values("similarity", ascending=False).head(top_n)
else:
print("π§ Reference song NOT in catalog β asking LLM to describe its features.")
prompt = reference_song_prompt.format(reference_song=parsed["reference_song"])
llm_output = llm(prompt)
print("π LLM Output:", llm_output)
# Try parsing the output
try:
json_str = re.search(r"\{[\s\S]*?\}", llm_output).group()
ref_features = json.loads(json_str)
except:
print("β οΈ Failed to parse LLM output. Using fallback.")
ref_features = {
"mood": "", "genre": "", "instrumental": "", "tempo": "",
"artist": "", "gender": "", "limit": parsed.get("limit", "5")
}
# Force keys into recommendation format
ref_features["limit"] = parsed.get("limit", "5")
ref_features["preference"] = parsed.get("preference", "Likes")
print("π― Parsed features from reference song:", ref_features)
return recommend_from_dataframe(ref_features, df_clean)
def extract_explanation(text):
split_text = text.split("Write a 2-sentence explanation.")
return split_text[1].strip() if len(split_text) > 1 else text.strip()
def generate_explanation(user_input, song_row):
prompt = f"""
User asked: "{user_input}"
Why is this song a good fit?
- Title: {song_row['Title']}
- Artist: {song_row['Artist']}
- Valence: {song_row['Valence']}
- Tempo: {song_row['Tempo']}
- Instrumentalness: {song_row['Instrumentalness']}
- Description: {song_row.get('Description', '')}
Write a 2-sentence explanation.
"""
raw = llm(prompt)
# If raw is a string (not a list), return it directly
if isinstance(raw, str):
return extract_explanation(raw)
# If raw is a list of dicts (like HF pipeline), extract .generated_text
if isinstance(raw, list) and "generated_text" in raw[0]:
return extract_explanation(raw[0]["generated_text"])
# Default fallback
return str(raw)
def handle_query(input_text):
print("π₯ User input received:", input_text)
try:
parsed = parse_user_input(input_text)
print("β
Parsed:", parsed)
ref_song = parsed.get("reference_song") or ""
if ref_song.strip().lower() not in ["", "...", "none", "n/a"]:
results = recommend_by_reference_song(parsed, df_clean, audio_feature_cols, llm, reference_song_prompt)
else:
results = recommend_from_dataframe(parsed, df_clean)
results = results.copy()
# results["Explanation"] = results.apply(lambda row: generate_explanation(input_text, row), axis=1)
print("β
Final results shape:", results.shape)
# β
Always return two DataFrames
return results, results
except Exception as e:
print("β ERROR:", e)
empty_df = pd.DataFrame(columns=["Title", "Artist", "Explanation"])
return empty_df, empty_df
# !pip install gradio
import gradio as gr
import pandas as pd
import datetime
# Global feedback tracker
feedback_df = pd.DataFrame(columns=["Query", "Title", "Artist", "Feedback"])
# Save functions
def submit_feedback(query, title, artist, feedback_type):
global feedback_df
new_feedback = pd.DataFrame([{
"Query": query,
"Title": title,
"Artist": artist,
"Feedback": feedback_type
}])
feedback_df = pd.concat([feedback_df, new_feedback], ignore_index=True)
return f"β
Feedback recorded for {title}: {feedback_type}"
def save_results(results_df):
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
path = f"recommendations_{timestamp}.csv"
results_df.to_csv(path, index=False)
return path
def save_feedback():
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
path = f"feedback_log_{timestamp}.csv"
feedback_df.to_csv(path, index=False)
return path
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π§ Song Recommender")
# Input & Run
user_input = gr.Textbox(label="What kind of song are you looking for?")
btn_run = gr.Button("π Recommend Songs | It will takes 5-15 minutes (or longer) for each prompt. Please be patientπ")
# Output Table + State
song_output = gr.Dataframe(label="π΅ Recommended Songs")
results_state = gr.State()
# Hidden Download Button
download_btn = gr.Button("β¬οΈ Download Recommendations CSV", visible=True)
download_file = gr.File()
# Wire up Run button
def run_query_and_show_download(input_text):
df_display, df_full = handle_query(input_text)
return df_display, df_full, gr.update(visible=True)
btn_run.click(
fn=run_query_and_show_download,
inputs=[user_input],
outputs=[song_output, results_state, download_btn]
)
download_btn.click(fn=save_results, inputs=[results_state], outputs=download_file)
# Feedback Section (Hidden until triggered)
gr.Markdown("### π§ Optional Feedback")
toggle_feedback_btn = gr.Button("βοΈ Give Feedback")
feedback_group = gr.Group(visible=False)
with feedback_group:
with gr.Row():
feedback_title = gr.Textbox(label="Song Title")
feedback_artist = gr.Textbox(label="Artist")
with gr.Row():
btn_like = gr.Button("π Relevant")
btn_dislike = gr.Button("π Not Relevant")
feedback_response = gr.Textbox(label="Feedback Message")
toggle_feedback_btn.click(lambda: gr.update(visible=True), None, outputs=[feedback_group])
btn_like.click(
fn=submit_feedback,
inputs=[user_input, feedback_title, feedback_artist, gr.State("π")],
outputs=feedback_response
)
btn_dislike.click(
fn=submit_feedback,
inputs=[user_input, feedback_title, feedback_artist, gr.State("π")],
outputs=feedback_response
)
# Optional download of feedback log (invisible for now)
download_feedback_btn = gr.Button("β¬οΈ Download Feedback Log CSV", visible=True)
download_feedback_file = gr.File()
download_feedback_btn.click(fn=save_feedback, outputs=download_feedback_file)
demo.launch() |