Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,6 @@ from PIL import Image
|
|
5 |
import cv2
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
8 |
-
from torchvision import transforms
|
9 |
-
from transformers import AutoModelForImageSegmentation
|
10 |
-
import torch # Make sure torch is imported
|
11 |
import logging
|
12 |
|
13 |
# Set up logging
|
@@ -17,17 +14,8 @@ logger = logging.getLogger(__name__)
|
|
17 |
# Load your trained model
|
18 |
model = tf.keras.models.load_model('recyclebot.keras')
|
19 |
|
20 |
-
# Load background removal model
|
21 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
22 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
23 |
-
)
|
24 |
|
25 |
-
|
26 |
-
transform_image = transforms.Compose([
|
27 |
-
transforms.Resize((1024, 1024)),
|
28 |
-
transforms.ToTensor(),
|
29 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
30 |
-
])
|
31 |
|
32 |
# Define class names for predictions (this should be the same as in your local code)
|
33 |
CLASSES = ['Glass', 'Metal', 'Paperboard', 'Plastic-Polystyrene', 'Plastic-Regular']
|
@@ -64,20 +52,6 @@ def preprocess_image(image_file):
|
|
64 |
raise
|
65 |
|
66 |
# Background removal function
|
67 |
-
def remove_background(image):
|
68 |
-
try:
|
69 |
-
image_size = image.size
|
70 |
-
input_images = transform_image(image).unsqueeze(0)
|
71 |
-
with torch.no_grad():
|
72 |
-
preds = birefnet(input_images)[-1].sigmoid()
|
73 |
-
pred = preds[0].squeeze()
|
74 |
-
pred_pil = transforms.ToPILImage()(pred)
|
75 |
-
mask = pred_pil.resize(image_size)
|
76 |
-
image.putalpha(mask)
|
77 |
-
return image
|
78 |
-
except Exception as e:
|
79 |
-
logger.error(f"Error in remove_background: {str(e)}")
|
80 |
-
raise
|
81 |
|
82 |
@app.post("/predict")
|
83 |
async def predict(file: UploadFile = File(...)):
|
@@ -95,36 +69,6 @@ async def predict(file: UploadFile = File(...)):
|
|
95 |
logger.error(f"Error in /predict: {str(e)}")
|
96 |
return JSONResponse(content={"error": str(e)}, status_code=400)
|
97 |
|
98 |
-
@app.post("/predict/recyclebot0accuracy")
|
99 |
-
async def predict_recyclebot0accuracy(file: UploadFile = File(...)):
|
100 |
-
try:
|
101 |
-
logger.info("Received request for /predict/recyclebot0accuracy")
|
102 |
-
# Load and remove background from image
|
103 |
-
image = Image.open(file.file).convert("RGB")
|
104 |
-
image = remove_background(image)
|
105 |
-
|
106 |
-
# Convert the image to RGB mode before saving as JPEG
|
107 |
-
if image.mode == 'RGBA':
|
108 |
-
image = image.convert('RGB')
|
109 |
-
|
110 |
-
# Save the image as JPEG (to use in further processing)
|
111 |
-
image_path = "processed_image.jpg"
|
112 |
-
image.save(image_path, "JPEG")
|
113 |
-
|
114 |
-
# Preprocess the image with the background removed
|
115 |
-
img_array = preprocess_image(image_path)
|
116 |
-
|
117 |
-
# Get predictions
|
118 |
-
prediction1 = model.predict(img_array)
|
119 |
-
|
120 |
-
predicted_class_idx = np.argmax(prediction1, axis=1)[0] # Get predicted class index
|
121 |
-
predicted_class = CLASSES[predicted_class_idx] # Convert to class name
|
122 |
-
|
123 |
-
return JSONResponse(content={"prediction": predicted_class})
|
124 |
-
|
125 |
-
except Exception as e:
|
126 |
-
logger.error(f"Error in /predict/recyclebot0accuracy: {str(e)}")
|
127 |
-
return JSONResponse(content={"error": str(e)}, status_code=400)
|
128 |
|
129 |
@app.get("/working")
|
130 |
async def working():
|
|
|
5 |
import cv2
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
8 |
import logging
|
9 |
|
10 |
# Set up logging
|
|
|
14 |
# Load your trained model
|
15 |
model = tf.keras.models.load_model('recyclebot.keras')
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Define class names for predictions (this should be the same as in your local code)
|
21 |
CLASSES = ['Glass', 'Metal', 'Paperboard', 'Plastic-Polystyrene', 'Plastic-Regular']
|
|
|
52 |
raise
|
53 |
|
54 |
# Background removal function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
@app.post("/predict")
|
57 |
async def predict(file: UploadFile = File(...)):
|
|
|
69 |
logger.error(f"Error in /predict: {str(e)}")
|
70 |
return JSONResponse(content={"error": str(e)}, status_code=400)
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
@app.get("/working")
|
74 |
async def working():
|