Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,6 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
12 |
|
13 |
# Load your trained model
|
14 |
model = tf.keras.models.load_model('recyclebot.keras')
|
15 |
-
model2 = tf.keras.models.load_model('72-75.keras')
|
16 |
|
17 |
# Define class names for predictions (this should be the same as in your local code)
|
18 |
CLASSES = ['Glass', 'Metal', 'Paperboard', 'Plastic-Polystyrene', 'Plastic-Regular']
|
@@ -57,14 +56,12 @@ async def predict(file: UploadFile = File(...)): #async def predict(request: R
|
|
57 |
try:
|
58 |
img_array = preprocess_image(file.file) # Preprocess the image
|
59 |
prediction1 = model.predict(img_array) # Get predictions
|
60 |
-
prediction1 = model2.predict(img_array) # Get predictions
|
61 |
|
62 |
weight_1 = 0.6
|
63 |
weight_2 = 0.4
|
64 |
|
65 |
-
final_preds = final_preds = (weight_1 * prediction1 + weight_2 * prediction2)
|
66 |
# Get the index of the highest probability class (like np.argmax on local machine)
|
67 |
-
predicted_class_idx = np.argmax(
|
68 |
|
69 |
# Map the predicted index to the class name (like final_class = CLASSES[np.argmax(final_preds)])
|
70 |
predicted_class = CLASSES[predicted_class_idx] # Convert to class name
|
|
|
12 |
|
13 |
# Load your trained model
|
14 |
model = tf.keras.models.load_model('recyclebot.keras')
|
|
|
15 |
|
16 |
# Define class names for predictions (this should be the same as in your local code)
|
17 |
CLASSES = ['Glass', 'Metal', 'Paperboard', 'Plastic-Polystyrene', 'Plastic-Regular']
|
|
|
56 |
try:
|
57 |
img_array = preprocess_image(file.file) # Preprocess the image
|
58 |
prediction1 = model.predict(img_array) # Get predictions
|
|
|
59 |
|
60 |
weight_1 = 0.6
|
61 |
weight_2 = 0.4
|
62 |
|
|
|
63 |
# Get the index of the highest probability class (like np.argmax on local machine)
|
64 |
+
predicted_class_idx = np.argmax(prediction1, axis=1)[0] # Get predicted class index
|
65 |
|
66 |
# Map the predicted index to the class name (like final_class = CLASSES[np.argmax(final_preds)])
|
67 |
predicted_class = CLASSES[predicted_class_idx] # Convert to class name
|