Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
import numpy as np | |
from transformers import T5Tokenizer, T5EncoderModel | |
import esm | |
from inference import load_models, predict_ensemble | |
from transformers import AutoTokenizer, AutoModel | |
# Load trained models | |
model_protT5, model_cat = load_models() | |
# Load ProtT5 model | |
tokenizer_t5 = T5Tokenizer.from_pretrained("Rostlab/prot_t5_xl_uniref50", do_lower_case=False) | |
model_t5 = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50") | |
model_t5 = model_t5.eval() | |
# Load the tokenizer and model | |
model_name = "facebook/esm2_t33_650M_UR50D" | |
tokenizer_esm = AutoTokenizer.from_pretrained(model_name) | |
esm_model = AutoModel.from_pretrained(model_name) | |
def extract_prott5_embedding(sequence): | |
sequence = sequence.replace(" ", "") | |
seq = " ".join(list(sequence)) | |
ids = tokenizer_t5(seq, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
embedding = model_t5(**ids).last_hidden_state | |
return torch.mean(embedding, dim=1) | |
# Extract ESM2 embedding | |
def extract_esm_embedding(sequence): | |
# Tokenize the sequence | |
inputs = tokenizer_esm(sequence, return_tensors="pt", padding=True, truncation=True) | |
# Forward pass through the model | |
with torch.no_grad(): | |
outputs = esm_model(**inputs) | |
# Extract the embeddings from the 33rd layer (ESM2 layer) | |
token_representations = outputs.last_hidden_state # This is the default layer | |
return torch.mean(token_representations[0, 1:len(sequence)+1], dim=0).unsqueeze(0) | |
def classify(sequence): | |
protT5_emb = extract_prott5_embedding(sequence) | |
esm_emb = extract_esm_embedding(sequence) | |
concat = torch.cat((esm_emb, protT5_emb), dim=1) | |
pred = predict_ensemble(protT5_emb, concat, model_protT5, model_cat) | |
return "Potential Allergen" if pred.item() == 1 else "Non-Allergen" | |
demo = gr.Interface(fn=classify, | |
inputs=gr.Textbox(lines=3, placeholder="Enter protein sequence..."), | |
outputs=gr.Label(label="Prediction")) | |
if __name__ == "__main__": | |
demo.launch() | |