File size: 3,942 Bytes
bd47e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d0d9a
bd47e61
 
 
 
49d0d9a
 
 
 
 
 
 
 
 
 
bd47e61
49d0d9a
bd47e61
 
 
49d0d9a
bd47e61
 
 
 
49d0d9a
bd47e61
af2f4e8
49d0d9a
 
 
 
bd47e61
 
 
af2f4e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import gradio as gr
import numpy as np
from transformers import T5Tokenizer, T5EncoderModel
import esm
from inference import load_models, predict_ensemble
from transformers import AutoTokenizer, AutoModel
import spaces

# Load trained models
model_protT5, model_cat = load_models()

# Load ProtT5 model
tokenizer_t5 = T5Tokenizer.from_pretrained("Rostlab/prot_t5_xl_uniref50", do_lower_case=False)
model_t5 = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
model_t5 = model_t5.eval()

# Load the tokenizer and model
model_name = "facebook/esm2_t33_650M_UR50D"
tokenizer_esm = AutoTokenizer.from_pretrained(model_name)
esm_model = AutoModel.from_pretrained(model_name)

def extract_prott5_embedding(sequence):
    sequence = sequence.replace(" ", "")
    seq = " ".join(list(sequence))
    ids = tokenizer_t5(seq, return_tensors="pt", padding=True)
    with torch.no_grad():
        embedding = model_t5(**ids).last_hidden_state
    return torch.mean(embedding, dim=1)


# Extract ESM2 embedding
def extract_esm_embedding(sequence):
    # Tokenize the sequence
    inputs = tokenizer_esm(sequence, return_tensors="pt", padding=True, truncation=True)
    
    # Forward pass through the model
    with torch.no_grad():
        outputs = esm_model(**inputs)
    
    # Extract the embeddings from the 33rd layer (ESM2 layer)
    token_representations = outputs.last_hidden_state  # This is the default layer
    return torch.mean(token_representations[0, 1:len(sequence)+1], dim=0).unsqueeze(0)

def estimate_duration(sequence):
    # Estimate duration based on sequence length
    base_time = 30  # Base time in seconds
    time_per_residue = 0.5  # Estimated time per residue
    estimated_time = base_time + len(sequence) * time_per_residue
    return min(int(estimated_time), 300)  # Cap at 300 seconds

@spaces.GPU(duration=120)
def classify(sequence):
    protT5_emb = extract_prott5_embedding(sequence)
    esm_emb = extract_esm_embedding(sequence)
    concat = torch.cat((esm_emb, protT5_emb), dim=1)
    pred = predict_ensemble(protT5_emb, concat, model_protT5, model_cat)
    return "Potential Allergen" if pred.item() == 1 else "Non-Allergen"


description_md = """

### 📌 **About AllerTrans – An Allergenicity Prediction Tool for Protein Sequences**



**🧬 Input Format – FASTA Sequences**  

This tool accepts protein sequences in FASTA format



**🧾 Output Explanation**



AllerTrans classifies your input sequence into one of the following categories:



🟢 Non-Allergen:

The protein is unlikely to cause an allergic reaction and can be considered safe in terms of allergenicity.



🔴 Potential Allergen:

The protein has the potential to trigger an allergic response or exhibit cross-reactivity in certain individuals. While not all individuals may experience reactions, these proteins cannot be considered safe.



**💡 Accepted Proteins**  

- Natural and also recombinant proteins  



🔎 **Note of Caution**:  

While our model demonstrates promising performance—particularly with recombinant proteins, as evidenced by our additional evaluation with a recombinant protein dataset  

from UniProt—**we advise caution when generalizing the results to all constructs and modifications of recombinant protein**.  The generizability of the model to various recombinant scenarios has not been fully explored.



**⚠️ Disclaimer**  

Although AllerTrans provides highly accurate predictions, it is intended as a screening tool. For clinical or regulatory decisions, always confirm results with experimental validation.

"""
    
with gr.Blocks() as demo:
    gr.Interface(
        fn=classify,
        inputs=gr.Textbox(lines=3, placeholder="Enter protein sequence..."),
        outputs=gr.Label(label="Prediction"),
    )
    gr.Markdown(description_md)

if __name__ == "__main__":
    demo.launch()