Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- model/AnomalyGPT_models.py +73 -0
- model/__init__.py +11 -0
- model/agent.py +81 -0
- model/modeling_llama.py +755 -0
- model/openllama.py +755 -0
model/AnomalyGPT_models.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import numpy as np
|
4 |
+
# from datas.dataset_3d import *
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class Normalize(nn.Module):
|
9 |
+
def __init__(self, dim: int) -> None:
|
10 |
+
super().__init__()
|
11 |
+
self.dim = dim
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
return torch.nn.functional.normalize(x, dim=self.dim, p=2)
|
15 |
+
|
16 |
+
|
17 |
+
class LinearLayer(nn.Module):
|
18 |
+
def __init__(self, dim_in, dim_out, k):
|
19 |
+
super(LinearLayer, self).__init__()
|
20 |
+
self.fc = nn.ModuleList([nn.Linear(dim_in, dim_out) for i in range(k)])
|
21 |
+
|
22 |
+
def forward(self, tokens):
|
23 |
+
for i in range(len(tokens)):
|
24 |
+
if len(tokens[i].shape) == 3:
|
25 |
+
tokens[i] = tokens[i].transpose(0,1)
|
26 |
+
tokens[i] = self.fc[i](tokens[i][:, 1:, :])
|
27 |
+
else:
|
28 |
+
B, C, H, W = tokens[i].shape
|
29 |
+
tokens[i] = self.fc[i](tokens[i].view(B, C, -1).permute(0, 2, 1).contiguous())
|
30 |
+
return tokens
|
31 |
+
|
32 |
+
class PromptLearner(nn.Module):
|
33 |
+
def __init__(self, dim_in, dim_out) -> None:
|
34 |
+
super().__init__()
|
35 |
+
self.meta_net = nn.Sequential(
|
36 |
+
nn.Conv2d(dim_in, dim_in * 4, kernel_size=3, padding=1),
|
37 |
+
# nn.BatchNorm2d(dim_in * 4),
|
38 |
+
nn.ReLU(inplace=True),
|
39 |
+
nn.MaxPool2d(2), # 112 * 112
|
40 |
+
|
41 |
+
nn.Conv2d(dim_in * 4, dim_in * 16, kernel_size=3, padding=1),
|
42 |
+
# nn.BatchNorm2d(dim_in * 16),
|
43 |
+
nn.ReLU(inplace=True),
|
44 |
+
nn.MaxPool2d(2), # 56 * 56
|
45 |
+
|
46 |
+
nn.Conv2d(dim_in * 16, dim_in * 64, kernel_size=3, padding=1),
|
47 |
+
# nn.BatchNorm2d(dim_in * 64),
|
48 |
+
nn.ReLU(inplace=True),
|
49 |
+
nn.MaxPool2d(2), # 28 * 28
|
50 |
+
|
51 |
+
nn.Conv2d(dim_in * 64, dim_in * 256, kernel_size=3, padding=1),
|
52 |
+
# nn.BatchNorm2d(dim_in * 256),
|
53 |
+
nn.ReLU(inplace=True),
|
54 |
+
nn.MaxPool2d(2), # 14 * 14
|
55 |
+
|
56 |
+
nn.Conv2d(dim_in * 256, dim_in * 1024, kernel_size=3, padding=1),
|
57 |
+
# nn.BatchNorm2d(dim_in * 1024),
|
58 |
+
nn.ReLU(inplace=True),
|
59 |
+
nn.MaxPool2d(2), # 7 * 7
|
60 |
+
|
61 |
+
nn.Conv2d(dim_in * 1024, dim_out, kernel_size=5, padding=0),
|
62 |
+
# nn.BatchNorm2d(dim_out),
|
63 |
+
# nn.ReLU(inplace=True),
|
64 |
+
)
|
65 |
+
self.base_prompts = nn.Parameter(torch.randn((9, dim_out)),requires_grad=True)
|
66 |
+
|
67 |
+
def forward(self, input):
|
68 |
+
B,C,H,W = input.shape
|
69 |
+
img_prompts = self.meta_net(input)
|
70 |
+
# print(input.shape, img_prompts.shape)
|
71 |
+
img_prompts = img_prompts.reshape(B,4096,9).transpose(-2,-1)
|
72 |
+
output = torch.cat([self.base_prompts.expand(B,-1,-1), img_prompts], dim=1)
|
73 |
+
return output
|
model/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .agent import DeepSpeedAgent
|
2 |
+
from .openllama import OpenLLAMAPEFTModel
|
3 |
+
# from .openllama_CLIP import OpenLLAMAPEFTModel_CLIP
|
4 |
+
from .ImageBind import models
|
5 |
+
|
6 |
+
def load_model(args):
|
7 |
+
agent_name = args['models'][args['model']]['agent_name']
|
8 |
+
model_name = args['models'][args['model']]['model_name']
|
9 |
+
model = globals()[model_name](**args)
|
10 |
+
agent = globals()[agent_name](model, args)
|
11 |
+
return agent
|
model/agent.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from header import *
|
2 |
+
|
3 |
+
class DeepSpeedAgent:
|
4 |
+
|
5 |
+
def __init__(self, model, args):
|
6 |
+
super(DeepSpeedAgent, self).__init__()
|
7 |
+
self.args = args
|
8 |
+
self.model = model
|
9 |
+
self.load_stage_1_parameters(args["delta_ckpt_path"])
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
for name, param in self.model.named_parameters():
|
14 |
+
param.requires_grad = False
|
15 |
+
|
16 |
+
for name, param in self.model.image_decoder.named_parameters():
|
17 |
+
param.requires_grad = True
|
18 |
+
|
19 |
+
for name, param in self.model.prompt_learner.named_parameters():
|
20 |
+
param.requires_grad = True
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
# load config parameters of deepspeed
|
26 |
+
ds_params = json.load(open(self.args['ds_config_path']))
|
27 |
+
ds_params['scheduler']['params']['total_num_steps'] = self.args['total_steps']
|
28 |
+
ds_params['scheduler']['params']['warmup_num_steps'] = max(10, int(self.args['total_steps'] * self.args['warmup_rate']))
|
29 |
+
self.ds_engine, self.optimizer, _ , _ = deepspeed.initialize(
|
30 |
+
model=self.model,
|
31 |
+
model_parameters=self.model.parameters(),
|
32 |
+
config_params=ds_params,
|
33 |
+
dist_init_required=True,
|
34 |
+
args=types.SimpleNamespace(**args)
|
35 |
+
)
|
36 |
+
|
37 |
+
@torch.no_grad()
|
38 |
+
def predict(self, batch):
|
39 |
+
self.model.eval()
|
40 |
+
string = self.model.generate_one_sample(batch)
|
41 |
+
return string
|
42 |
+
|
43 |
+
def train_model(self, batch, current_step=0, pbar=None):
|
44 |
+
self.ds_engine.module.train()
|
45 |
+
loss, mle_acc = self.ds_engine(batch)
|
46 |
+
|
47 |
+
self.ds_engine.backward(loss)
|
48 |
+
self.ds_engine.step()
|
49 |
+
pbar.set_description(f'[!] loss: {round(loss.item(), 4)}; token_acc: {round(mle_acc*100, 2)}')
|
50 |
+
pbar.update(1)
|
51 |
+
if self.args['local_rank'] == 0 and self.args['log_path'] and current_step % self.args['logging_step'] == 0:
|
52 |
+
elapsed = pbar.format_dict['elapsed']
|
53 |
+
rate = pbar.format_dict['rate']
|
54 |
+
remaining = (pbar.total - pbar.n) / rate if rate and pbar.total else 0
|
55 |
+
remaining = str(datetime.timedelta(seconds=remaining))
|
56 |
+
logging.info(f'[!] progress: {round(pbar.n/pbar.total, 5)}; remaining time: {remaining}; loss: {round(loss.item(), 4)}; token_acc: {round(mle_acc*100, 2)}')
|
57 |
+
|
58 |
+
mle_acc *= 100
|
59 |
+
return mle_acc
|
60 |
+
|
61 |
+
def save_model(self, path, current_step):
|
62 |
+
# only save trainable model parameters
|
63 |
+
param_grad_dic = {
|
64 |
+
k: v.requires_grad for (k, v) in self.ds_engine.module.named_parameters()
|
65 |
+
}
|
66 |
+
state_dict = self.ds_engine.module.state_dict()
|
67 |
+
checkpoint = OrderedDict()
|
68 |
+
for k, v in self.ds_engine.module.named_parameters():
|
69 |
+
if v.requires_grad:
|
70 |
+
print(k)
|
71 |
+
checkpoint[k] = v
|
72 |
+
torch.save(checkpoint, f'{path}/pytorch_model.pt')
|
73 |
+
# save tokenizer
|
74 |
+
self.model.llama_tokenizer.save_pretrained(path)
|
75 |
+
# save configuration
|
76 |
+
self.model.llama_model.config.save_pretrained(path)
|
77 |
+
print(f'[!] save model into {path}')
|
78 |
+
|
79 |
+
def load_stage_1_parameters(self, path):
|
80 |
+
delta_ckpt = torch.load(path, map_location=torch.device('cpu'))
|
81 |
+
self.model.load_state_dict(delta_ckpt, strict=False)
|
model/modeling_llama.py
ADDED
@@ -0,0 +1,755 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This script is based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
2 |
+
|
3 |
+
""" PyTorch LLaMA model."""
|
4 |
+
import math
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
11 |
+
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
16 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
22 |
+
|
23 |
+
|
24 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
25 |
+
def _make_causal_mask(
|
26 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
27 |
+
):
|
28 |
+
"""
|
29 |
+
Make causal mask used for bi-directional self-attention.
|
30 |
+
"""
|
31 |
+
bsz, tgt_len = input_ids_shape
|
32 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
33 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
34 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
35 |
+
mask = mask.to(dtype)
|
36 |
+
|
37 |
+
if past_key_values_length > 0:
|
38 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
39 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
40 |
+
|
41 |
+
|
42 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
43 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
44 |
+
"""
|
45 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
46 |
+
"""
|
47 |
+
bsz, src_len = mask.size()
|
48 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
49 |
+
|
50 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
51 |
+
|
52 |
+
inverted_mask = 1.0 - expanded_mask
|
53 |
+
|
54 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
55 |
+
|
56 |
+
|
57 |
+
class LlamaRMSNorm(nn.Module):
|
58 |
+
def __init__(self, hidden_size, eps=1e-6):
|
59 |
+
"""
|
60 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
61 |
+
"""
|
62 |
+
super().__init__()
|
63 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
64 |
+
self.variance_epsilon = eps
|
65 |
+
|
66 |
+
def forward(self, hidden_states):
|
67 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
68 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
69 |
+
|
70 |
+
# convert into half-precision if necessary
|
71 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
72 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
73 |
+
|
74 |
+
return self.weight * hidden_states
|
75 |
+
|
76 |
+
|
77 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
78 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
79 |
+
super().__init__()
|
80 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
81 |
+
self.register_buffer("inv_freq", inv_freq)
|
82 |
+
|
83 |
+
# Build here to make `torch.jit.trace` work.
|
84 |
+
self.max_seq_len_cached = max_position_embeddings
|
85 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
86 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
87 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
88 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
89 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
90 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
91 |
+
|
92 |
+
def forward(self, x, seq_len=None):
|
93 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
94 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
95 |
+
if seq_len > self.max_seq_len_cached:
|
96 |
+
self.max_seq_len_cached = seq_len
|
97 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
98 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
99 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
100 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
101 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
102 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
103 |
+
return (
|
104 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
105 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
def rotate_half(x):
|
110 |
+
"""Rotates half the hidden dims of the input."""
|
111 |
+
x1 = x[..., : x.shape[-1] // 2]
|
112 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
113 |
+
return torch.cat((-x2, x1), dim=-1)
|
114 |
+
|
115 |
+
|
116 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
117 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
118 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
119 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
120 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
121 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
122 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
123 |
+
return q_embed, k_embed
|
124 |
+
|
125 |
+
|
126 |
+
class LlamaMLP(nn.Module):
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
hidden_size: int,
|
130 |
+
intermediate_size: int,
|
131 |
+
hidden_act: str,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
135 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
136 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
137 |
+
self.act_fn = ACT2FN[hidden_act]
|
138 |
+
|
139 |
+
def forward(self, x):
|
140 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
141 |
+
|
142 |
+
|
143 |
+
class LlamaAttention(nn.Module):
|
144 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
145 |
+
|
146 |
+
def __init__(self, config: LlamaConfig):
|
147 |
+
super().__init__()
|
148 |
+
self.config = config
|
149 |
+
self.hidden_size = config.hidden_size
|
150 |
+
self.num_heads = config.num_attention_heads
|
151 |
+
self.head_dim = self.hidden_size // self.num_heads
|
152 |
+
self.max_position_embeddings = config.max_position_embeddings
|
153 |
+
|
154 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
155 |
+
raise ValueError(
|
156 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
157 |
+
f" and `num_heads`: {self.num_heads})."
|
158 |
+
)
|
159 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
160 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
161 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
162 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
163 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
164 |
+
|
165 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
166 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
167 |
+
|
168 |
+
def forward(
|
169 |
+
self,
|
170 |
+
hidden_states: torch.Tensor,
|
171 |
+
attention_mask: Optional[torch.Tensor] = None,
|
172 |
+
position_ids: Optional[torch.LongTensor] = None,
|
173 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
174 |
+
output_attentions: bool = False,
|
175 |
+
use_cache: bool = False,
|
176 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
177 |
+
bsz, q_len, _ = hidden_states.size()
|
178 |
+
|
179 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
180 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
181 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
182 |
+
|
183 |
+
kv_seq_len = key_states.shape[-2]
|
184 |
+
if past_key_value is not None:
|
185 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
186 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
187 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
188 |
+
# [bsz, nh, t, hd]
|
189 |
+
|
190 |
+
if past_key_value is not None:
|
191 |
+
# reuse k, v, self_attention
|
192 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
193 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
194 |
+
|
195 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
196 |
+
|
197 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
198 |
+
|
199 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
200 |
+
raise ValueError(
|
201 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
202 |
+
f" {attn_weights.size()}"
|
203 |
+
)
|
204 |
+
|
205 |
+
if attention_mask is not None:
|
206 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
207 |
+
raise ValueError(
|
208 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
209 |
+
)
|
210 |
+
attn_weights = attn_weights + attention_mask
|
211 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
212 |
+
|
213 |
+
# upcast attention to fp32
|
214 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
215 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
216 |
+
|
217 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
218 |
+
raise ValueError(
|
219 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
220 |
+
f" {attn_output.size()}"
|
221 |
+
)
|
222 |
+
|
223 |
+
attn_output = attn_output.transpose(1, 2)
|
224 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
225 |
+
|
226 |
+
attn_output = self.o_proj(attn_output)
|
227 |
+
|
228 |
+
if not output_attentions:
|
229 |
+
attn_weights = None
|
230 |
+
|
231 |
+
return attn_output, attn_weights, past_key_value
|
232 |
+
|
233 |
+
|
234 |
+
class LlamaDecoderLayer(nn.Module):
|
235 |
+
def __init__(self, config: LlamaConfig):
|
236 |
+
super().__init__()
|
237 |
+
self.hidden_size = config.hidden_size
|
238 |
+
self.self_attn = LlamaAttention(config=config)
|
239 |
+
self.mlp = LlamaMLP(
|
240 |
+
hidden_size=self.hidden_size,
|
241 |
+
intermediate_size=config.intermediate_size,
|
242 |
+
hidden_act=config.hidden_act,
|
243 |
+
)
|
244 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
245 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
246 |
+
|
247 |
+
def forward(
|
248 |
+
self,
|
249 |
+
hidden_states: torch.Tensor,
|
250 |
+
attention_mask: Optional[torch.Tensor] = None,
|
251 |
+
position_ids: Optional[torch.LongTensor] = None,
|
252 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
253 |
+
output_attentions: Optional[bool] = False,
|
254 |
+
use_cache: Optional[bool] = False,
|
255 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
256 |
+
"""
|
257 |
+
Args:
|
258 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
259 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
260 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
261 |
+
output_attentions (`bool`, *optional*):
|
262 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
263 |
+
returned tensors for more detail.
|
264 |
+
use_cache (`bool`, *optional*):
|
265 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
266 |
+
(see `past_key_values`).
|
267 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
268 |
+
"""
|
269 |
+
|
270 |
+
residual = hidden_states
|
271 |
+
|
272 |
+
hidden_states = self.input_layernorm(hidden_states)
|
273 |
+
|
274 |
+
# Self Attention
|
275 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
276 |
+
hidden_states=hidden_states,
|
277 |
+
attention_mask=attention_mask,
|
278 |
+
position_ids=position_ids,
|
279 |
+
past_key_value=past_key_value,
|
280 |
+
output_attentions=output_attentions,
|
281 |
+
use_cache=use_cache,
|
282 |
+
)
|
283 |
+
hidden_states = residual + hidden_states
|
284 |
+
|
285 |
+
# Fully Connected
|
286 |
+
residual = hidden_states
|
287 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
288 |
+
hidden_states = self.mlp(hidden_states)
|
289 |
+
hidden_states = residual + hidden_states
|
290 |
+
|
291 |
+
outputs = (hidden_states,)
|
292 |
+
|
293 |
+
if output_attentions:
|
294 |
+
outputs += (self_attn_weights,)
|
295 |
+
|
296 |
+
if use_cache:
|
297 |
+
outputs += (present_key_value,)
|
298 |
+
|
299 |
+
return outputs
|
300 |
+
|
301 |
+
|
302 |
+
LLAMA_START_DOCSTRING = r"""
|
303 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
304 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
305 |
+
etc.)
|
306 |
+
|
307 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
308 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
309 |
+
and behavior.
|
310 |
+
|
311 |
+
Parameters:
|
312 |
+
config ([`LlamaConfig`]):
|
313 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
314 |
+
load the weights associated with the model, only the configuration. Check out the
|
315 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
316 |
+
"""
|
317 |
+
|
318 |
+
|
319 |
+
@add_start_docstrings(
|
320 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
321 |
+
LLAMA_START_DOCSTRING,
|
322 |
+
)
|
323 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
324 |
+
config_class = LlamaConfig
|
325 |
+
base_model_prefix = "model"
|
326 |
+
supports_gradient_checkpointing = True
|
327 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
328 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
329 |
+
|
330 |
+
def _init_weights(self, module):
|
331 |
+
std = self.config.initializer_range
|
332 |
+
if isinstance(module, nn.Linear):
|
333 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
334 |
+
if module.bias is not None:
|
335 |
+
module.bias.data.zero_()
|
336 |
+
elif isinstance(module, nn.Embedding):
|
337 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
338 |
+
if module.padding_idx is not None:
|
339 |
+
module.weight.data[module.padding_idx].zero_()
|
340 |
+
|
341 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
342 |
+
if isinstance(module, LlamaModel):
|
343 |
+
module.gradient_checkpointing = value
|
344 |
+
|
345 |
+
|
346 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
347 |
+
Args:
|
348 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
349 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
350 |
+
it.
|
351 |
+
|
352 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
353 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
354 |
+
|
355 |
+
[What are input IDs?](../glossary#input-ids)
|
356 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
357 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
358 |
+
|
359 |
+
- 1 for tokens that are **not masked**,
|
360 |
+
- 0 for tokens that are **masked**.
|
361 |
+
|
362 |
+
[What are attention masks?](../glossary#attention-mask)
|
363 |
+
|
364 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
365 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
366 |
+
|
367 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
368 |
+
`past_key_values`).
|
369 |
+
|
370 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
371 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
372 |
+
information on the default strategy.
|
373 |
+
|
374 |
+
- 1 indicates the head is **not masked**,
|
375 |
+
- 0 indicates the head is **masked**.
|
376 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
377 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
378 |
+
config.n_positions - 1]`.
|
379 |
+
|
380 |
+
[What are position IDs?](../glossary#position-ids)
|
381 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
382 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
383 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
384 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
385 |
+
|
386 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
387 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
388 |
+
|
389 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
390 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
391 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
392 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
393 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
394 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
395 |
+
model's internal embedding lookup matrix.
|
396 |
+
use_cache (`bool`, *optional*):
|
397 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
398 |
+
`past_key_values`).
|
399 |
+
output_attentions (`bool`, *optional*):
|
400 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
401 |
+
tensors for more detail.
|
402 |
+
output_hidden_states (`bool`, *optional*):
|
403 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
404 |
+
more detail.
|
405 |
+
return_dict (`bool`, *optional*):
|
406 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
407 |
+
"""
|
408 |
+
|
409 |
+
|
410 |
+
@add_start_docstrings(
|
411 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
412 |
+
LLAMA_START_DOCSTRING,
|
413 |
+
)
|
414 |
+
class LlamaModel(LlamaPreTrainedModel):
|
415 |
+
"""
|
416 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
417 |
+
|
418 |
+
Args:
|
419 |
+
config: LlamaConfig
|
420 |
+
"""
|
421 |
+
|
422 |
+
def __init__(self, config: LlamaConfig):
|
423 |
+
super().__init__(config)
|
424 |
+
self.padding_idx = config.pad_token_id
|
425 |
+
self.vocab_size = config.vocab_size
|
426 |
+
|
427 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
428 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
429 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
430 |
+
|
431 |
+
self.gradient_checkpointing = False
|
432 |
+
# Initialize weights and apply final processing
|
433 |
+
self.post_init()
|
434 |
+
|
435 |
+
def get_input_embeddings(self):
|
436 |
+
return self.embed_tokens
|
437 |
+
|
438 |
+
def set_input_embeddings(self, value):
|
439 |
+
self.embed_tokens = value
|
440 |
+
|
441 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
442 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
443 |
+
# create causal mask
|
444 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
445 |
+
combined_attention_mask = None
|
446 |
+
if input_shape[-1] > 1:
|
447 |
+
combined_attention_mask = _make_causal_mask(
|
448 |
+
input_shape,
|
449 |
+
inputs_embeds.dtype,
|
450 |
+
device=inputs_embeds.device,
|
451 |
+
past_key_values_length=past_key_values_length,
|
452 |
+
)
|
453 |
+
|
454 |
+
if attention_mask is not None:
|
455 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
456 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
457 |
+
inputs_embeds.device
|
458 |
+
)
|
459 |
+
combined_attention_mask = (
|
460 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
461 |
+
)
|
462 |
+
|
463 |
+
return combined_attention_mask
|
464 |
+
|
465 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
466 |
+
def forward(
|
467 |
+
self,
|
468 |
+
input_ids: torch.LongTensor = None,
|
469 |
+
attention_mask: Optional[torch.Tensor] = None,
|
470 |
+
position_ids: Optional[torch.LongTensor] = None,
|
471 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
472 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
473 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
474 |
+
use_cache: Optional[bool] = None,
|
475 |
+
output_attentions: Optional[bool] = None,
|
476 |
+
output_hidden_states: Optional[bool] = None,
|
477 |
+
return_dict: Optional[bool] = None,
|
478 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
479 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
480 |
+
output_hidden_states = (
|
481 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
482 |
+
)
|
483 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
484 |
+
|
485 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
486 |
+
|
487 |
+
# retrieve input_ids and inputs_embeds
|
488 |
+
if input_ids is not None and inputs_embeds is not None:
|
489 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
490 |
+
elif input_ids is not None:
|
491 |
+
batch_size, seq_length = input_ids.shape
|
492 |
+
elif inputs_embeds is not None:
|
493 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
494 |
+
else:
|
495 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
496 |
+
|
497 |
+
if inputs_embeds is None:
|
498 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
499 |
+
if query_embeds is not None:
|
500 |
+
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
|
501 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
502 |
+
|
503 |
+
seq_length_with_past = seq_length
|
504 |
+
past_key_values_length = 0
|
505 |
+
|
506 |
+
if past_key_values is not None:
|
507 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
508 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
509 |
+
|
510 |
+
if position_ids is None:
|
511 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
512 |
+
position_ids = torch.arange(
|
513 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
514 |
+
)
|
515 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
516 |
+
else:
|
517 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
518 |
+
|
519 |
+
# embed positions
|
520 |
+
if attention_mask is None:
|
521 |
+
attention_mask = torch.ones(
|
522 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
523 |
+
)
|
524 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
525 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
526 |
+
)
|
527 |
+
|
528 |
+
hidden_states = inputs_embeds
|
529 |
+
|
530 |
+
if self.gradient_checkpointing and self.training:
|
531 |
+
if use_cache:
|
532 |
+
logger.warning_once(
|
533 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
534 |
+
)
|
535 |
+
use_cache = False
|
536 |
+
|
537 |
+
# decoder layers
|
538 |
+
all_hidden_states = () if output_hidden_states else None
|
539 |
+
all_self_attns = () if output_attentions else None
|
540 |
+
next_decoder_cache = () if use_cache else None
|
541 |
+
|
542 |
+
for idx, decoder_layer in enumerate(self.layers):
|
543 |
+
if output_hidden_states:
|
544 |
+
all_hidden_states += (hidden_states,)
|
545 |
+
|
546 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
547 |
+
|
548 |
+
if self.gradient_checkpointing and self.training:
|
549 |
+
|
550 |
+
def create_custom_forward(module):
|
551 |
+
def custom_forward(*inputs):
|
552 |
+
# None for past_key_value
|
553 |
+
return module(*inputs, output_attentions, None)
|
554 |
+
|
555 |
+
return custom_forward
|
556 |
+
|
557 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
558 |
+
create_custom_forward(decoder_layer),
|
559 |
+
hidden_states,
|
560 |
+
attention_mask,
|
561 |
+
position_ids,
|
562 |
+
None,
|
563 |
+
)
|
564 |
+
else:
|
565 |
+
layer_outputs = decoder_layer(
|
566 |
+
hidden_states,
|
567 |
+
attention_mask=attention_mask,
|
568 |
+
position_ids=position_ids,
|
569 |
+
past_key_value=past_key_value,
|
570 |
+
output_attentions=output_attentions,
|
571 |
+
use_cache=use_cache,
|
572 |
+
)
|
573 |
+
|
574 |
+
hidden_states = layer_outputs[0]
|
575 |
+
|
576 |
+
if use_cache:
|
577 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
578 |
+
|
579 |
+
if output_attentions:
|
580 |
+
all_self_attns += (layer_outputs[1],)
|
581 |
+
|
582 |
+
hidden_states = self.norm(hidden_states)
|
583 |
+
|
584 |
+
# add hidden states from the last decoder layer
|
585 |
+
if output_hidden_states:
|
586 |
+
all_hidden_states += (hidden_states,)
|
587 |
+
|
588 |
+
next_cache = next_decoder_cache if use_cache else None
|
589 |
+
if not return_dict:
|
590 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
591 |
+
return BaseModelOutputWithPast(
|
592 |
+
last_hidden_state=hidden_states,
|
593 |
+
past_key_values=next_cache,
|
594 |
+
hidden_states=all_hidden_states,
|
595 |
+
attentions=all_self_attns,
|
596 |
+
)
|
597 |
+
|
598 |
+
|
599 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
600 |
+
def __init__(self, config):
|
601 |
+
super().__init__(config)
|
602 |
+
self.model = LlamaModel(config)
|
603 |
+
|
604 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
605 |
+
|
606 |
+
# Initialize weights and apply final processing
|
607 |
+
self.post_init()
|
608 |
+
|
609 |
+
def get_input_embeddings(self):
|
610 |
+
return self.model.embed_tokens
|
611 |
+
|
612 |
+
def set_input_embeddings(self, value):
|
613 |
+
self.model.embed_tokens = value
|
614 |
+
|
615 |
+
def get_output_embeddings(self):
|
616 |
+
return self.lm_head
|
617 |
+
|
618 |
+
def set_output_embeddings(self, new_embeddings):
|
619 |
+
self.lm_head = new_embeddings
|
620 |
+
|
621 |
+
def set_decoder(self, decoder):
|
622 |
+
self.model = decoder
|
623 |
+
|
624 |
+
def get_decoder(self):
|
625 |
+
return self.model
|
626 |
+
|
627 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
628 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
629 |
+
def forward(
|
630 |
+
self,
|
631 |
+
input_ids: torch.LongTensor = None,
|
632 |
+
attention_mask: Optional[torch.Tensor] = None,
|
633 |
+
position_ids: Optional[torch.LongTensor] = None,
|
634 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
635 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
636 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
637 |
+
labels: Optional[torch.LongTensor] = None,
|
638 |
+
use_cache: Optional[bool] = None,
|
639 |
+
output_attentions: Optional[bool] = None,
|
640 |
+
output_hidden_states: Optional[bool] = None,
|
641 |
+
return_dict: Optional[bool] = None,
|
642 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
643 |
+
r"""
|
644 |
+
Args:
|
645 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
646 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
647 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
648 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
649 |
+
|
650 |
+
Returns:
|
651 |
+
|
652 |
+
Example:
|
653 |
+
|
654 |
+
```python
|
655 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
656 |
+
|
657 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
658 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
659 |
+
|
660 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
661 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
662 |
+
|
663 |
+
>>> # Generate
|
664 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
665 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
666 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
667 |
+
```"""
|
668 |
+
|
669 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
670 |
+
output_hidden_states = (
|
671 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
672 |
+
)
|
673 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
674 |
+
|
675 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
676 |
+
outputs = self.model(
|
677 |
+
input_ids=input_ids,
|
678 |
+
attention_mask=attention_mask,
|
679 |
+
position_ids=position_ids,
|
680 |
+
past_key_values=past_key_values,
|
681 |
+
inputs_embeds=inputs_embeds,
|
682 |
+
query_embeds=query_embeds,
|
683 |
+
use_cache=use_cache,
|
684 |
+
output_attentions=output_attentions,
|
685 |
+
output_hidden_states=output_hidden_states,
|
686 |
+
return_dict=return_dict,
|
687 |
+
)
|
688 |
+
|
689 |
+
hidden_states = outputs[0]
|
690 |
+
logits = self.lm_head(hidden_states)
|
691 |
+
|
692 |
+
loss = None
|
693 |
+
if labels is not None:
|
694 |
+
# Shift so that tokens < n predict n
|
695 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
696 |
+
shift_labels = labels[..., 1:].contiguous()
|
697 |
+
# Flatten the tokens
|
698 |
+
loss_fct = CrossEntropyLoss()
|
699 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
700 |
+
shift_labels = shift_labels.view(-1)
|
701 |
+
# Enable model parallelism
|
702 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
703 |
+
loss = loss_fct(shift_logits, shift_labels)
|
704 |
+
|
705 |
+
if not return_dict:
|
706 |
+
output = (logits,) + outputs[1:]
|
707 |
+
return (loss,) + output if loss is not None else output
|
708 |
+
|
709 |
+
return CausalLMOutputWithPast(
|
710 |
+
loss=loss,
|
711 |
+
logits=logits,
|
712 |
+
past_key_values=outputs.past_key_values,
|
713 |
+
hidden_states=outputs.hidden_states,
|
714 |
+
attentions=outputs.attentions,
|
715 |
+
)
|
716 |
+
|
717 |
+
def prepare_inputs_for_generation(
|
718 |
+
self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
719 |
+
):
|
720 |
+
if past_key_values:
|
721 |
+
input_ids = input_ids[:, -1:]
|
722 |
+
|
723 |
+
position_ids = kwargs.get("position_ids", None)
|
724 |
+
if attention_mask is not None and position_ids is None:
|
725 |
+
# create position_ids on the fly for batch generation
|
726 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
727 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
728 |
+
if past_key_values:
|
729 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
730 |
+
query_embeds = None
|
731 |
+
|
732 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
733 |
+
if inputs_embeds is not None and past_key_values is None:
|
734 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
735 |
+
else:
|
736 |
+
model_inputs = {"input_ids": input_ids}
|
737 |
+
|
738 |
+
model_inputs.update(
|
739 |
+
{
|
740 |
+
"position_ids": position_ids,
|
741 |
+
"query_embeds": query_embeds,
|
742 |
+
"past_key_values": past_key_values,
|
743 |
+
"use_cache": kwargs.get("use_cache"),
|
744 |
+
"attention_mask": attention_mask,
|
745 |
+
}
|
746 |
+
)
|
747 |
+
return model_inputs
|
748 |
+
|
749 |
+
@staticmethod
|
750 |
+
def _reorder_cache(past_key_values, beam_idx):
|
751 |
+
reordered_past = ()
|
752 |
+
for layer_past in past_key_values:
|
753 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
754 |
+
return reordered_past
|
755 |
+
|
model/openllama.py
ADDED
@@ -0,0 +1,755 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from header import *
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from .ImageBind import *
|
4 |
+
from .ImageBind import data
|
5 |
+
from .modeling_llama import LlamaForCausalLM
|
6 |
+
from .AnomalyGPT_models import LinearLayer, PromptLearner
|
7 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
8 |
+
from utils.loss import FocalLoss, BinaryDiceLoss
|
9 |
+
import kornia as K
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch.nn.utils import rnn
|
13 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
14 |
+
from accelerate import init_empty_weights, load_checkpoint_and_dispatch, infer_auto_device_map
|
15 |
+
|
16 |
+
CLASS_NAMES = ['bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper', 'object',
|
17 |
+
'candle', 'cashew', 'chewinggum', 'fryum', 'macaroni', 'pcb', 'pipe fryum']
|
18 |
+
|
19 |
+
prompt_normal = ['{}', 'flawless {}', 'perfect {}', 'unblemished {}', '{} without flaw', '{} without defect', '{} without damage']
|
20 |
+
prompt_abnormal = ['damaged {}', 'broken {}', '{} with flaw', '{} with defect', '{} with damage']
|
21 |
+
|
22 |
+
prompt_state = [prompt_normal, prompt_abnormal]
|
23 |
+
prompt_templates = ['a photo of a {}.', 'a photo of the {}.']
|
24 |
+
# prompt_templates = [
|
25 |
+
# 'a cropped photo of the {}.', 'a cropped photo of a {}.', 'a close-up photo of a {}.', 'a close-up photo of the {}.',
|
26 |
+
# 'a bright photo of the {}.', 'a bright photo of a {}.', 'a dark photo of a {}.', 'a dark photo of the {}.',
|
27 |
+
# 'a dark photo of the {}.', 'a dark photo of a {}.', 'a jpeg corrupted photo of a {}.', 'a jpeg corrupted photo of the {}.',
|
28 |
+
# 'a blurry photo of the {}.', 'a blurry photo of a {}.', 'a photo of a {}.', 'a photo of the {}.',
|
29 |
+
# 'a photo of the small {}.', 'a photo of a small {}.', 'a photo of the large {}.', 'a photo of a large {}.',
|
30 |
+
# 'a photo of the {} for visual insprction.', 'a photo of a {} for visual insprction.',
|
31 |
+
# 'a photo of the {} for anomaly detection.', 'a photo of a {} for anomaly detection.'
|
32 |
+
# ]
|
33 |
+
objs = ['bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper', 'object',
|
34 |
+
'candle', 'cashew', 'chewinggum', 'fryum', 'macaroni', 'pcb', 'pipe fryum', 'macaroni1', 'macaroni2','pcb1', 'pcb2', 'pcb3', 'pcb4', 'capsules']
|
35 |
+
|
36 |
+
prompt_sentences = {}
|
37 |
+
|
38 |
+
for obj in objs:
|
39 |
+
prompt_sentence_obj = []
|
40 |
+
for i in range(len(prompt_state)):
|
41 |
+
prompted_state = [state.format(obj) for state in prompt_state[i]]
|
42 |
+
prompted_sentence = []
|
43 |
+
for s in prompted_state:
|
44 |
+
for template in prompt_templates:
|
45 |
+
prompted_sentence.append(template.format(s))
|
46 |
+
prompted_sentence = data.load_and_transform_text(prompted_sentence, torch.cuda.current_device())#torch.cuda.current_device())
|
47 |
+
prompt_sentence_obj.append(prompted_sentence)
|
48 |
+
prompt_sentences[obj] = prompt_sentence_obj
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def encode_text_with_prompt_ensemble(model, obj, device):
|
53 |
+
|
54 |
+
global prompt_sentences
|
55 |
+
normal_sentences = []
|
56 |
+
abnormal_sentences = []
|
57 |
+
for idx in range(len(obj)):
|
58 |
+
sentence = prompt_sentences[obj[idx].replace('_', ' ')]
|
59 |
+
normal_sentences.append(sentence[0])
|
60 |
+
abnormal_sentences.append(sentence[1])
|
61 |
+
|
62 |
+
normal_sentences = torch.cat(normal_sentences).to(device)
|
63 |
+
abnormal_sentences = torch.cat(abnormal_sentences).to(device)
|
64 |
+
|
65 |
+
class_embeddings_normal = model({ModalityType.TEXT: normal_sentences})[ModalityType.TEXT][0]
|
66 |
+
class_embeddings_abnormal = model({ModalityType.TEXT: abnormal_sentences})[ModalityType.TEXT][0]
|
67 |
+
# class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
|
68 |
+
|
69 |
+
class_embeddings_normal = class_embeddings_normal.reshape((len(obj), len(prompt_templates) * len(prompt_normal), 1024))
|
70 |
+
class_embeddings_normal = class_embeddings_normal.mean(dim=1, keepdim=True)
|
71 |
+
class_embeddings_normal = class_embeddings_normal / class_embeddings_normal.norm(dim=-1, keepdim=True)
|
72 |
+
|
73 |
+
class_embeddings_abnormal = class_embeddings_abnormal.reshape((len(obj), len(prompt_templates) * len(prompt_abnormal), 1024))
|
74 |
+
class_embeddings_abnormal = class_embeddings_abnormal.mean(dim=1, keepdim=True)
|
75 |
+
class_embeddings_abnormal = class_embeddings_abnormal / class_embeddings_abnormal.norm(dim=-1, keepdim=True)
|
76 |
+
|
77 |
+
text_features = torch.cat([class_embeddings_normal, class_embeddings_abnormal], dim=1)
|
78 |
+
|
79 |
+
return text_features
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
84 |
+
|
85 |
+
def __init__(self, stops = [], encounters=1):
|
86 |
+
super().__init__()
|
87 |
+
self.stops = stops
|
88 |
+
self.ENCOUNTERS = encounters
|
89 |
+
|
90 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
91 |
+
stop_count = 0
|
92 |
+
for stop in self.stops:
|
93 |
+
stop_count = (stop == input_ids[0]).sum().item()
|
94 |
+
if stop_count >= self.ENCOUNTERS:
|
95 |
+
return True
|
96 |
+
return False
|
97 |
+
|
98 |
+
def build_one_instance(tokenizer, conversation):
|
99 |
+
text_list = []
|
100 |
+
turn_num = len(conversation)
|
101 |
+
input_ids, target_ids = [], []
|
102 |
+
for i in range(turn_num):
|
103 |
+
turn = conversation[i]
|
104 |
+
role = turn['from']
|
105 |
+
if i == 0: # the first human turn
|
106 |
+
assert role == 'human'
|
107 |
+
text = turn['value'] + '\n### Assistant:'
|
108 |
+
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
|
109 |
+
input_ids += one_input_id
|
110 |
+
target_ids += [-100]*len(one_input_id) # do not perform loss regression on human prompt
|
111 |
+
else:
|
112 |
+
if role == 'human':
|
113 |
+
text = 'Human: ' + turn['value'] + '\n### Assistant:'
|
114 |
+
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
|
115 |
+
input_ids += one_input_id
|
116 |
+
target_ids += [-100]*len(one_input_id)
|
117 |
+
elif role == 'gpt':
|
118 |
+
text = turn['value'] + '\n###'
|
119 |
+
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
|
120 |
+
input_ids += one_input_id
|
121 |
+
target_ids += one_input_id
|
122 |
+
else:
|
123 |
+
raise Exception('Wrong Role!!!')
|
124 |
+
text_list.append(text)
|
125 |
+
assert len(input_ids) == len(target_ids)
|
126 |
+
return text_list, input_ids, target_ids
|
127 |
+
|
128 |
+
def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len):
|
129 |
+
batch_input_ids, batch_target_ids = [], []
|
130 |
+
for conversation in batch_of_conversations:
|
131 |
+
_, one_input_ids, one_target_ids = build_one_instance(tokenizer, conversation)
|
132 |
+
batch_input_ids.append(torch.LongTensor(one_input_ids))
|
133 |
+
batch_target_ids.append(torch.LongTensor(one_target_ids))
|
134 |
+
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
|
135 |
+
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
|
136 |
+
assert input_ids.size() == target_ids.size()
|
137 |
+
input_ids = input_ids[:,:max_tgt_len]
|
138 |
+
target_ids = target_ids[:,:max_tgt_len]
|
139 |
+
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
140 |
+
assert attention_mask.size() == input_ids.size()
|
141 |
+
return input_ids, target_ids, attention_mask.long()
|
142 |
+
|
143 |
+
def find_first_file_in_directory(directory_path):
|
144 |
+
try:
|
145 |
+
file_list = os.listdir(directory_path)
|
146 |
+
for item in file_list:
|
147 |
+
item_path = os.path.join(directory_path, item)
|
148 |
+
if os.path.isfile(item_path):
|
149 |
+
return item_path
|
150 |
+
return None
|
151 |
+
|
152 |
+
except OSError as e:
|
153 |
+
print(f"Error while accessing directory: {e}")
|
154 |
+
return None
|
155 |
+
|
156 |
+
|
157 |
+
PROMPT_START = '### Human: <Img>'
|
158 |
+
class OpenLLAMAPEFTModel(nn.Module):
|
159 |
+
|
160 |
+
'''LoRA for LLaMa model'''
|
161 |
+
|
162 |
+
def __init__(self, **args):
|
163 |
+
super(OpenLLAMAPEFTModel, self).__init__()
|
164 |
+
self.args = args
|
165 |
+
imagebind_ckpt_path = args['imagebind_ckpt_path']
|
166 |
+
vicuna_ckpt_path = args['vicuna_ckpt_path']
|
167 |
+
max_tgt_len = args['max_tgt_len']
|
168 |
+
stage = args['stage']
|
169 |
+
|
170 |
+
self.device = torch.cuda.current_device()
|
171 |
+
|
172 |
+
print (f'Initializing visual encoder from {imagebind_ckpt_path} ...')
|
173 |
+
|
174 |
+
self.visual_encoder, self.visual_hidden_size = imagebind_model.imagebind_huge(args)
|
175 |
+
self.visual_encoder.to(torch.float16).to(self.device)
|
176 |
+
imagebind_ckpt = torch.load(imagebind_ckpt_path, map_location=torch.device('cpu'))
|
177 |
+
self.visual_encoder.load_state_dict(imagebind_ckpt, strict=True)
|
178 |
+
|
179 |
+
|
180 |
+
self.iter = 0
|
181 |
+
|
182 |
+
self.image_decoder = LinearLayer(1280, 1024, 4).to(torch.float16).to(self.device)
|
183 |
+
|
184 |
+
self.prompt_learner = PromptLearner(1, 4096).to(torch.float16).to(self.device)
|
185 |
+
|
186 |
+
self.loss_focal = FocalLoss()
|
187 |
+
self.loss_dice = BinaryDiceLoss()
|
188 |
+
|
189 |
+
|
190 |
+
# free vision encoder
|
191 |
+
for name, param in self.visual_encoder.named_parameters():
|
192 |
+
param.requires_grad = False
|
193 |
+
self.visual_encoder.eval()
|
194 |
+
print ('Visual encoder initialized.')
|
195 |
+
|
196 |
+
print (f'Initializing language decoder from {vicuna_ckpt_path} ...')
|
197 |
+
|
198 |
+
# add the lora module
|
199 |
+
peft_config = LoraConfig(
|
200 |
+
task_type=TaskType.CAUSAL_LM,
|
201 |
+
inference_mode=False,
|
202 |
+
r=self.args['lora_r'],
|
203 |
+
lora_alpha=self.args['lora_alpha'],
|
204 |
+
lora_dropout=self.args['lora_dropout'],
|
205 |
+
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj']
|
206 |
+
)
|
207 |
+
|
208 |
+
# config = AutoConfig.from_pretrained(vicuna_ckpt_path)
|
209 |
+
# with init_empty_weights():
|
210 |
+
# self.llama_model = AutoModelForCausalLM.from_config(config)
|
211 |
+
|
212 |
+
# # device_map = infer_auto_device_map(self.llama_model, no_split_module_classes=["OPTDecoderLayer"], dtype="float16")
|
213 |
+
# # print(device_map)
|
214 |
+
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 0, 'model.layers.10.self_attn': 0, 'model.layers.10.mlp.gate_proj': 0, 'model.layers.10.mlp.down_proj': 'cpu', 'model.layers.10.mlp.up_proj': 'cpu', 'model.layers.10.mlp.act_fn': 'cpu', 'model.layers.10.input_layernorm': 'cpu', 'model.layers.10.post_attention_layernorm': 'cpu', 'model.layers.11': 'cpu', 'model.layers.12': 'cpu', 'model.layers.13': 'cpu', 'model.layers.14': 'cpu', 'model.layers.15': 'cpu', 'model.layers.16': 'cpu', 'model.layers.17': 'cpu', 'model.layers.18': 'cpu', 'model.layers.19': 'cpu', 'model.layers.20': 'cpu', 'model.layers.21': 'cpu', 'model.layers.22': 'cpu', 'model.layers.23': 'cpu', 'model.layers.24': 'disk', 'model.layers.25': 'disk', 'model.layers.26': 'disk', 'model.layers.27': 'disk', 'model.layers.28': 'disk', 'model.layers.29': 'disk', 'model.layers.30': 'disk', 'model.layers.31.self_attn': 'disk', 'model.layers.31.mlp.gate_proj': 'disk', 'model.layers.31.mlp.down_proj': 'disk', 'model.layers.31.mlp.up_proj': 'disk', 'model.layers.31.mlp.act_fn': 'disk', 'model.layers.31.input_layernorm': 'disk', 'model.layers.31.post_attention_layernorm': 'disk', 'model.norm': 'disk', 'lm_head': 'disk'}
|
215 |
+
# # self.llama_model = load_checkpoint_and_dispatch(self.llama_model, vicuna_ckpt_path, device_map=device_map, offload_folder="offload", offload_state_dict = True)
|
216 |
+
# # self.llama_model.to(torch.float16)
|
217 |
+
# # try:
|
218 |
+
self.llama_model = AutoModelForCausalLM.from_pretrained(vicuna_ckpt_path, torch_dtype=torch.float16, device_map='auto', load_in_8bit=True)
|
219 |
+
# # except:
|
220 |
+
# pass
|
221 |
+
# finally:
|
222 |
+
# print(self.llama_model.hf_device_map)
|
223 |
+
self.llama_model = get_peft_model(self.llama_model, peft_config)
|
224 |
+
# delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
|
225 |
+
# self.llama_model.load_state_dict(delta_ckpt, strict=False)
|
226 |
+
self.llama_model.print_trainable_parameters()
|
227 |
+
|
228 |
+
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False, torch_dtype=torch.float16)
|
229 |
+
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
|
230 |
+
self.llama_tokenizer.padding_side = "right"
|
231 |
+
print ('Language decoder initialized.')
|
232 |
+
|
233 |
+
self.llama_proj = nn.Linear(
|
234 |
+
self.visual_hidden_size, self.llama_model.config.hidden_size
|
235 |
+
).to(torch.float16).to(self.device)
|
236 |
+
|
237 |
+
self.max_tgt_len = max_tgt_len
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
def rot90_img(self,x,k):
|
242 |
+
# k is 0,1,2,3
|
243 |
+
degreesarr = [0., 90., 180., 270., 360]
|
244 |
+
degrees = torch.tensor(degreesarr[k]).to(self.llama_model.dtype).to(self.device)
|
245 |
+
x = K.geometry.transform.rotate(x, angle = degrees, padding_mode='reflection')
|
246 |
+
return x
|
247 |
+
|
248 |
+
def encode_video(self, video_paths):
|
249 |
+
inputs = {ModalityType.VISION: data.load_and_transform_video_data(video_paths, self.device)}
|
250 |
+
# convert into visual dtype
|
251 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
252 |
+
with torch.no_grad():
|
253 |
+
embeddings = self.visual_encoder(inputs)
|
254 |
+
video_embeds = embeddings[ModalityType.VISION][0] # bsz x 1024
|
255 |
+
inputs_llama = self.llama_proj(video_embeds).unsqueeze(1) # bsz x 1 x llama_size
|
256 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
|
257 |
+
return inputs_llama, atts_llama
|
258 |
+
|
259 |
+
def encode_audio(self, audio_paths):
|
260 |
+
inputs = {ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, self.device)}
|
261 |
+
# convert into visual dtype
|
262 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
263 |
+
with torch.no_grad():
|
264 |
+
embeddings = self.visual_encoder(inputs)
|
265 |
+
audio_embeds = embeddings[ModalityType.AUDIO][0] # bsz x 1024
|
266 |
+
inputs_llama = self.llama_proj(audio_embeds).unsqueeze(1) # bsz x 1 x llama_size
|
267 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
|
268 |
+
return inputs_llama, atts_llama
|
269 |
+
|
270 |
+
def encode_thermal(self, thermal_paths):
|
271 |
+
inputs = {ModalityType.THERMAL: data.load_and_transform_thermal_data(thermal_paths, self.device)}
|
272 |
+
# convert into visual dtype
|
273 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
274 |
+
with torch.no_grad():
|
275 |
+
embeddings = self.visual_encoder(inputs)
|
276 |
+
image_embeds = embeddings['thermal'][0] # bsz x 1024
|
277 |
+
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
|
278 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
|
279 |
+
return inputs_llama, atts_llama
|
280 |
+
|
281 |
+
def encode_image(self, image_paths):
|
282 |
+
inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
|
283 |
+
# convert into visual dtype
|
284 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
285 |
+
with torch.no_grad():
|
286 |
+
embeddings = self.visual_encoder(inputs)
|
287 |
+
image_embeds = embeddings['vision'][0] # bsz x 1024
|
288 |
+
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
|
289 |
+
patch_tokens = self.image_decoder(patch_features) # bsz x h*w x 1024
|
290 |
+
|
291 |
+
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
|
292 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
|
293 |
+
return inputs_llama, atts_llama, patch_tokens
|
294 |
+
|
295 |
+
def encode_image_for_web_demo(self, image_paths):
|
296 |
+
inputs = {ModalityType.VISION: data.load_and_transform_vision_data_for_web_demo(image_paths, self.device)}
|
297 |
+
# convert into visual dtype
|
298 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
299 |
+
with torch.no_grad():
|
300 |
+
embeddings = self.visual_encoder(inputs)
|
301 |
+
image_embeds = embeddings['vision'][0] # bsz x 1024
|
302 |
+
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
|
303 |
+
patch_tokens = self.image_decoder(patch_features) # bsz x h*w x 1024
|
304 |
+
|
305 |
+
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
|
306 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
|
307 |
+
return inputs_llama, atts_llama, patch_tokens
|
308 |
+
|
309 |
+
def encode_image_for_one_shot(self, image_paths):
|
310 |
+
inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
|
311 |
+
# convert into visual dtype
|
312 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
313 |
+
with torch.no_grad():
|
314 |
+
embeddings = self.visual_encoder(inputs)
|
315 |
+
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
|
316 |
+
for i in range(len(patch_features)):
|
317 |
+
patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :]
|
318 |
+
|
319 |
+
return patch_features
|
320 |
+
|
321 |
+
def encode_image_for_one_shot_from_tensor(self, image_tensors):
|
322 |
+
if not isinstance(image_tensors, list):
|
323 |
+
image_tensors = [image_tensors]
|
324 |
+
inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
|
325 |
+
# convert into visual dtype
|
326 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
327 |
+
with torch.no_grad():
|
328 |
+
embeddings = self.visual_encoder(inputs)
|
329 |
+
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
|
330 |
+
for i in range(len(patch_features)):
|
331 |
+
patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :]
|
332 |
+
|
333 |
+
return patch_features
|
334 |
+
|
335 |
+
def encode_image_for_one_shot_with_aug(self, image_paths):
|
336 |
+
image_tensors = data.load_and_transform_vision_data(image_paths, self.device).to(self.llama_model.dtype)
|
337 |
+
B,C,H,W = image_tensors.shape
|
338 |
+
# print(B,C,H,W)
|
339 |
+
|
340 |
+
rotated_images = torch.zeros((4, B, C, H, W)).to(self.llama_model.dtype).to(self.device)
|
341 |
+
|
342 |
+
|
343 |
+
for j, degree in enumerate([0, 1, 2, 3]):
|
344 |
+
rotated_img = self.rot90_img(image_tensors, degree)
|
345 |
+
# 存储旋转后的图像
|
346 |
+
rotated_images[j] = rotated_img
|
347 |
+
|
348 |
+
image_tensors = rotated_images.transpose(0,1).reshape(B * 4, C, H, W)
|
349 |
+
|
350 |
+
inputs = {ModalityType.VISION: image_tensors}
|
351 |
+
# convert into visual dtype
|
352 |
+
inputs = {key: inputs[key] for key in inputs}
|
353 |
+
with torch.no_grad():
|
354 |
+
embeddings = self.visual_encoder(inputs)
|
355 |
+
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
|
356 |
+
for i in range(len(patch_features)):
|
357 |
+
patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :].reshape(B,4,256,1280).reshape(B, 4 * 256, 1280)
|
358 |
+
|
359 |
+
return patch_features
|
360 |
+
|
361 |
+
def encode_image_from_tensor(self, image_tensors):
|
362 |
+
if not isinstance(image_tensors, list):
|
363 |
+
image_tensors = [image_tensors]
|
364 |
+
inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
|
365 |
+
# convert into visual dtype
|
366 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
367 |
+
with torch.no_grad():
|
368 |
+
embeddings = self.visual_encoder(inputs)
|
369 |
+
image_embeds = embeddings['vision'][0] # bsz x 1024
|
370 |
+
patch_features = embeddings['vision'][1] # bsz x h*w x 1024
|
371 |
+
patch_tokens = self.image_decoder(patch_features)
|
372 |
+
|
373 |
+
|
374 |
+
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
|
375 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
|
376 |
+
return inputs_llama, atts_llama, patch_tokens
|
377 |
+
|
378 |
+
def encode_image_from_tensor_no_patch(self, image_tensors):
|
379 |
+
if not isinstance(image_tensors, list):
|
380 |
+
image_tensors = [image_tensors]
|
381 |
+
inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
|
382 |
+
# convert into visual dtype
|
383 |
+
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
|
384 |
+
with torch.no_grad():
|
385 |
+
embeddings = self.visual_encoder(inputs)
|
386 |
+
image_embeds = embeddings['vision'][0] # bsz x 1024
|
387 |
+
|
388 |
+
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
|
389 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
|
390 |
+
return inputs_llama, atts_llama
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
def prompt_wrap(self, img_embeds, input_ids, target_ids, attention_mask, anomaly_embedding = None):
|
395 |
+
'''
|
396 |
+
input_ids, target_ids, attention_mask: bsz x s2
|
397 |
+
'''
|
398 |
+
input_ids = input_ids.to(self.device) # bsz x s2
|
399 |
+
target_ids = target_ids.to(self.device) # bsz x s2
|
400 |
+
attention_mask = attention_mask.to(self.device) # bsz x s2
|
401 |
+
|
402 |
+
batch_size = img_embeds.shape[0]
|
403 |
+
p_before = PROMPT_START
|
404 |
+
p_before_tokens = self.llama_tokenizer(p_before,
|
405 |
+
return_tensors="pt", add_special_tokens=False).to(self.device)
|
406 |
+
# peft model need deeper call
|
407 |
+
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
|
408 |
+
|
409 |
+
p_middle = '</Img> '
|
410 |
+
p_middle_tokens = self.llama_tokenizer(p_middle,
|
411 |
+
return_tensors="pt", add_special_tokens=False).to(self.device)
|
412 |
+
# peft model need deeper call
|
413 |
+
p_middle_embeds = self.llama_model.model.model.embed_tokens(p_middle_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
|
414 |
+
|
415 |
+
|
416 |
+
p_after_embeds = self.llama_model.model.model.embed_tokens(input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
|
417 |
+
bos = torch.ones([batch_size, 1],
|
418 |
+
dtype=p_before_tokens.input_ids.dtype,
|
419 |
+
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
|
420 |
+
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
|
421 |
+
|
422 |
+
|
423 |
+
|
424 |
+
if anomaly_embedding != None:
|
425 |
+
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_middle_embeds, anomaly_embedding, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
|
426 |
+
# create targets
|
427 |
+
empty_targets = (
|
428 |
+
torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1] + anomaly_embedding.size()[1]], # 1 (bos) + s1 + 1 (image vector)
|
429 |
+
dtype=torch.long).to(self.device).fill_(-100)
|
430 |
+
) # bsz x (1 + s1 + 1)
|
431 |
+
targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2)
|
432 |
+
assert inputs_embeds.size()[1] == targets.size()[1]
|
433 |
+
|
434 |
+
atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1] + anomaly_embedding.size()[1]], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1)
|
435 |
+
attention_mask = torch.cat([atts_prefix, attention_mask], dim=1)
|
436 |
+
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
|
437 |
+
return inputs_embeds, targets, attention_mask
|
438 |
+
else:
|
439 |
+
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_middle_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
|
440 |
+
# create targets
|
441 |
+
empty_targets = (
|
442 |
+
torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1]], # 1 (bos) + s1 + 1 (image vector)
|
443 |
+
dtype=torch.long).to(self.device).fill_(-100)
|
444 |
+
) # bsz x (1 + s1 + 1)
|
445 |
+
targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2)
|
446 |
+
assert inputs_embeds.size()[1] == targets.size()[1]
|
447 |
+
|
448 |
+
atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1]], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1)
|
449 |
+
attention_mask = torch.cat([atts_prefix, attention_mask], dim=1)
|
450 |
+
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
|
451 |
+
return inputs_embeds, targets, attention_mask
|
452 |
+
|
453 |
+
|
454 |
+
def forward(self, inputs):
|
455 |
+
|
456 |
+
if 'masks' in inputs:
|
457 |
+
|
458 |
+
image_paths = inputs['images']
|
459 |
+
img_embeds, _, patch_tokens = self.encode_image_from_tensor(image_paths)
|
460 |
+
class_name = inputs['class_names']
|
461 |
+
|
462 |
+
loss_pixel = 0
|
463 |
+
feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object' for _ in class_name], self.device)
|
464 |
+
|
465 |
+
anomaly_maps = []
|
466 |
+
for layer in range(len(patch_tokens)):
|
467 |
+
patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
|
468 |
+
# print(patch_tokens[layer].shape)
|
469 |
+
# anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
|
470 |
+
anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
|
471 |
+
B, L, C = anomaly_map.shape
|
472 |
+
H = int(np.sqrt(L))
|
473 |
+
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
|
474 |
+
size=224, mode='bilinear', align_corners=True)
|
475 |
+
# anomaly_map_no_softmax = anomaly_map
|
476 |
+
anomaly_map = torch.softmax(anomaly_map, dim=1)
|
477 |
+
anomaly_maps.append(anomaly_map)
|
478 |
+
# anomaly_maps_ns.append(anomaly_map_no_softmax)
|
479 |
+
|
480 |
+
gt = inputs['masks']
|
481 |
+
gt = torch.stack(gt, dim=0).to(self.device)
|
482 |
+
gt = gt.squeeze()
|
483 |
+
# print(gt.max(), gt.min())
|
484 |
+
gt[gt > 0.3], gt[gt <= 0.3] = 1, 0
|
485 |
+
|
486 |
+
|
487 |
+
for num in range(len(anomaly_maps)):
|
488 |
+
f_loss = self.loss_focal(anomaly_maps[num], gt)
|
489 |
+
d_loss = self.loss_dice(anomaly_maps[num][:, 1, :, :], gt)
|
490 |
+
loss_pixel = loss_pixel + f_loss + d_loss
|
491 |
+
|
492 |
+
for num in range(len(anomaly_maps)):
|
493 |
+
anomaly_maps[num] = anomaly_maps[num][:,1,:,:]
|
494 |
+
|
495 |
+
anomaly_map_all = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)
|
496 |
+
|
497 |
+
if random.randint(0,1) == 0 and len(inputs['img_paths']) == len(image_paths):
|
498 |
+
|
499 |
+
normal_paths = []
|
500 |
+
for path in inputs['img_paths']:
|
501 |
+
normal_path = path.replace('test', 'train')
|
502 |
+
normal_path = find_first_file_in_directory("/".join(normal_path.split('/')[:-2])+'/good')
|
503 |
+
normal_paths.append(normal_path)
|
504 |
+
|
505 |
+
print(normal_paths)
|
506 |
+
query_patch_tokens = self.encode_image_for_one_shot_from_tensor(image_paths)
|
507 |
+
normal_patch_tokens = self.encode_image_for_one_shot_with_aug(normal_paths)
|
508 |
+
sims = []
|
509 |
+
B = len(image_paths)
|
510 |
+
|
511 |
+
for i in range(len(query_patch_tokens)):
|
512 |
+
query_patch_tokens_reshaped = query_patch_tokens[i].view(B,256,1,1280)
|
513 |
+
normal_tokens_reshaped = normal_patch_tokens[i].reshape(B,1,-1,1280)
|
514 |
+
cosine_similarity_matrix = F.cosine_similarity(query_patch_tokens_reshaped, normal_tokens_reshaped, dim=-1)
|
515 |
+
sim_max, _ = torch.max(cosine_similarity_matrix, dim=-1)
|
516 |
+
sims.append(sim_max)
|
517 |
+
|
518 |
+
sim = torch.mean(torch.stack(sims,dim=0), dim=0).reshape(B,1,16,16)
|
519 |
+
sim = F.interpolate(sim,size=224, mode='bilinear', align_corners=True)
|
520 |
+
anomaly_map_all = 1 - sim # (anomaly_map_all + 1 - sim) / 2
|
521 |
+
|
522 |
+
anomaly_map_prompts = self.prompt_learner(anomaly_map_all)
|
523 |
+
|
524 |
+
# img_embeds = img_embeds + anomaly_map_prompts
|
525 |
+
|
526 |
+
output_texts = inputs['texts']
|
527 |
+
input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len)
|
528 |
+
inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask, anomaly_map_prompts)
|
529 |
+
|
530 |
+
outputs = self.llama_model(
|
531 |
+
inputs_embeds=inputs_embeds,
|
532 |
+
attention_mask=attention_mask,
|
533 |
+
return_dict=True,
|
534 |
+
labels=targets,
|
535 |
+
)
|
536 |
+
loss = outputs.loss
|
537 |
+
|
538 |
+
# loss_l2 = torch.norm(anomaly_map_prompts / 2 , p=2)
|
539 |
+
# loss_l2 = nn.MSELoss()(img_embeds_origin, img_embeds)
|
540 |
+
# calculate the token accuarcy
|
541 |
+
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1]
|
542 |
+
# print(self.llama_tokenizer.decode(chosen_tokens[0], skip_special_tokens=True))
|
543 |
+
labels = targets[:, 2:]
|
544 |
+
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
|
545 |
+
valid_mask = (labels != -100).reshape(-1)
|
546 |
+
# print(self.llama_tokenizer.decode(chosen_tokens.reshape(-1)[valid_mask], skip_special_tokens=True))
|
547 |
+
valid_tokens = gen_acc & valid_mask # [B*S]
|
548 |
+
gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()
|
549 |
+
|
550 |
+
return loss + loss_pixel, gen_acc
|
551 |
+
|
552 |
+
else:
|
553 |
+
|
554 |
+
image_paths = inputs['image_paths']
|
555 |
+
img_embeds, _, patch_tokens = self.encode_image_from_tensor(image_paths)
|
556 |
+
|
557 |
+
output_texts = inputs['output_texts']
|
558 |
+
|
559 |
+
c_name = 'object'
|
560 |
+
for name in CLASS_NAMES:
|
561 |
+
if name in output_texts:
|
562 |
+
c_name = name
|
563 |
+
break
|
564 |
+
|
565 |
+
feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object'] * len(image_paths), self.device)
|
566 |
+
|
567 |
+
anomaly_maps = []
|
568 |
+
for layer in range(len(patch_tokens)):
|
569 |
+
patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
|
570 |
+
# print(patch_tokens[layer].shape)
|
571 |
+
# anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
|
572 |
+
anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
|
573 |
+
B, L, C = anomaly_map.shape
|
574 |
+
H = int(np.sqrt(L))
|
575 |
+
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
|
576 |
+
size=224, mode='bilinear', align_corners=True)
|
577 |
+
# anomaly_map_no_softmax = anomaly_map
|
578 |
+
anomaly_map = torch.softmax(anomaly_map, dim=1)
|
579 |
+
anomaly_maps.append(anomaly_map)
|
580 |
+
|
581 |
+
for num in range(len(anomaly_maps)):
|
582 |
+
anomaly_maps[num] = anomaly_maps[num][:,1,:,:]
|
583 |
+
|
584 |
+
anomaly_map_all = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)
|
585 |
+
|
586 |
+
anomaly_map_prompts = self.prompt_learner(anomaly_map_all)
|
587 |
+
|
588 |
+
# img_embeds = img_embeds + anomaly_map_prompts
|
589 |
+
|
590 |
+
input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len)
|
591 |
+
inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask, anomaly_map_prompts)
|
592 |
+
|
593 |
+
outputs = self.llama_model(
|
594 |
+
inputs_embeds=inputs_embeds,
|
595 |
+
attention_mask=attention_mask,
|
596 |
+
return_dict=True,
|
597 |
+
labels=targets,
|
598 |
+
)
|
599 |
+
loss = outputs.loss
|
600 |
+
# calculate the token accuarcy
|
601 |
+
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1]
|
602 |
+
labels = targets[:, 2:]
|
603 |
+
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
|
604 |
+
valid_mask = (labels != -100).reshape(-1)
|
605 |
+
valid_tokens = gen_acc & valid_mask # [B*S]
|
606 |
+
gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()
|
607 |
+
|
608 |
+
return loss, gen_acc
|
609 |
+
|
610 |
+
|
611 |
+
def extract_multimodal_feature(self, inputs, web_demo):
|
612 |
+
features = []
|
613 |
+
if inputs['image_paths']:
|
614 |
+
|
615 |
+
prompt = inputs['prompt']
|
616 |
+
c_name = 'object'
|
617 |
+
for name in CLASS_NAMES:
|
618 |
+
if name in prompt:
|
619 |
+
c_name = name
|
620 |
+
break
|
621 |
+
|
622 |
+
if not web_demo:
|
623 |
+
image_embeds, _, patch_tokens = self.encode_image(inputs['image_paths'])
|
624 |
+
feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, [c_name], self.device)
|
625 |
+
else:
|
626 |
+
image_embeds, _, patch_tokens = self.encode_image_for_web_demo(inputs['image_paths'])
|
627 |
+
feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object'], self.device)
|
628 |
+
|
629 |
+
anomaly_maps = []
|
630 |
+
for layer in range(len(patch_tokens)):
|
631 |
+
patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
|
632 |
+
# print(patch_tokens[layer].shape)
|
633 |
+
# anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
|
634 |
+
anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
|
635 |
+
B, L, C = anomaly_map.shape
|
636 |
+
H = int(np.sqrt(L))
|
637 |
+
# anomaly_map = anomaly_map.to(torch.float16)
|
638 |
+
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
|
639 |
+
size=224, mode='bilinear', align_corners=True)
|
640 |
+
# anomaly_map = anomaly_map.to(torch.bfloat16)
|
641 |
+
anomaly_map = torch.softmax(anomaly_map, dim=1)
|
642 |
+
anomaly_maps.append(anomaly_map[:,1,:,:])
|
643 |
+
|
644 |
+
anomaly_map_ret = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)
|
645 |
+
# anomaly_map_all = anomaly_map_ret.unsqueeze(1).repeat((1,3,1,1))
|
646 |
+
# anomaly_map_feature, _, _ = self.encode_image_from_tensor(anomaly_map_all)
|
647 |
+
# image_embeds = anomaly_map_feature + image_embeds
|
648 |
+
if inputs['normal_img_paths']:
|
649 |
+
query_patch_tokens = self.encode_image_for_one_shot(inputs['image_paths'])
|
650 |
+
if 'mvtec' in 'normal_img_paths':
|
651 |
+
normal_patch_tokens = self.encode_image_for_one_shot_with_aug(inputs['normal_img_paths'])
|
652 |
+
else:
|
653 |
+
normal_patch_tokens = self.encode_image_for_one_shot(inputs['normal_img_paths'])
|
654 |
+
sims = []
|
655 |
+
|
656 |
+
for i in range(len(query_patch_tokens)):
|
657 |
+
query_patch_tokens_reshaped = query_patch_tokens[i].view(256,1,1280)
|
658 |
+
normal_tokens_reshaped = normal_patch_tokens[i].reshape(1,-1,1280)
|
659 |
+
cosine_similarity_matrix = F.cosine_similarity(query_patch_tokens_reshaped, normal_tokens_reshaped, dim=2)
|
660 |
+
sim_max, _ = torch.max(cosine_similarity_matrix, dim=1)
|
661 |
+
sims.append(sim_max)
|
662 |
+
|
663 |
+
sim = torch.mean(torch.stack(sims,dim=0), dim=0).reshape(1,1,16,16)
|
664 |
+
# anomaly_map = anomaly_map.to(torch.float16)
|
665 |
+
sim = F.interpolate(sim,size=224, mode='bilinear', align_corners=True)
|
666 |
+
# anomaly_map = anomaly_map.to(torch.bfloat16)
|
667 |
+
anomaly_map_ret = 1 - sim # (anomaly_map_ret + 1 - sim) / 2
|
668 |
+
|
669 |
+
|
670 |
+
features.append(image_embeds)
|
671 |
+
if inputs['audio_paths']:
|
672 |
+
audio_embeds, _ = self.encode_audio(inputs['audio_paths'])
|
673 |
+
features.append(audio_embeds)
|
674 |
+
if inputs['video_paths']:
|
675 |
+
video_embeds, _ = self.encode_video(inputs['video_paths'])
|
676 |
+
features.append(video_embeds)
|
677 |
+
if inputs['thermal_paths']:
|
678 |
+
thermal_embeds, _ = self.encode_thermal(inputs['thermal_paths'])
|
679 |
+
features.append(thermal_embeds)
|
680 |
+
|
681 |
+
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
|
682 |
+
return feature_embeds, anomaly_map_ret
|
683 |
+
|
684 |
+
def prepare_generation_embedding(self, inputs, web_demo):
|
685 |
+
prompt = inputs['prompt']
|
686 |
+
# if len(inputs['modality_embeds']) == 1:
|
687 |
+
# feature_embeds = inputs['modality_embeds'][0]
|
688 |
+
# else:
|
689 |
+
feature_embeds, anomaly_map = self.extract_multimodal_feature(inputs, web_demo)
|
690 |
+
# print(anomaly_map.shape)
|
691 |
+
inputs['modality_embeds'].append(feature_embeds)
|
692 |
+
|
693 |
+
batch_size = feature_embeds.shape[0]
|
694 |
+
p_before = PROMPT_START
|
695 |
+
p_before_tokens = self.llama_tokenizer(p_before,
|
696 |
+
return_tensors="pt", add_special_tokens=False).to(self.device)
|
697 |
+
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
|
698 |
+
|
699 |
+
p_middle = '</Img> '
|
700 |
+
p_middle_tokens = self.llama_tokenizer(p_middle,
|
701 |
+
return_tensors="pt", add_special_tokens=False).to(self.device)
|
702 |
+
# peft model need deeper call
|
703 |
+
p_middle_embeds = self.llama_model.model.model.embed_tokens(p_middle_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
|
704 |
+
|
705 |
+
# self.prompt_learner.eval()
|
706 |
+
anomaly_map_prompts = self.prompt_learner(anomaly_map)
|
707 |
+
|
708 |
+
|
709 |
+
|
710 |
+
|
711 |
+
text = prompt + '\n### Assistant:'
|
712 |
+
p_after_tokens = self.llama_tokenizer(text, add_special_tokens=False, return_tensors='pt').to(self.device)
|
713 |
+
p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
|
714 |
+
bos = torch.ones([batch_size, 1],
|
715 |
+
dtype=p_before_tokens.input_ids.dtype,
|
716 |
+
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
|
717 |
+
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
|
718 |
+
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, feature_embeds, p_middle_embeds, anomaly_map_prompts, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
|
719 |
+
|
720 |
+
return inputs_embeds, anomaly_map
|
721 |
+
|
722 |
+
def generate(self, inputs, web_demo=False):
|
723 |
+
'''
|
724 |
+
inputs = {
|
725 |
+
'image_paths': optional,
|
726 |
+
'audio_paths': optional
|
727 |
+
'video_paths': optional
|
728 |
+
'thermal_paths': optional
|
729 |
+
'mode': generation mode,
|
730 |
+
'prompt': human input prompt,
|
731 |
+
'max_tgt_len': generation length,
|
732 |
+
'top_p': top_p,
|
733 |
+
'temperature': temperature
|
734 |
+
'modality_embeds': None or torch.tensor
|
735 |
+
'modality_cache': save the image cache
|
736 |
+
}
|
737 |
+
'''
|
738 |
+
# self.prompt_learner.eval()
|
739 |
+
# self.llama_model.eval()
|
740 |
+
# self.llama_proj.eval()
|
741 |
+
# self.image_decoder.eval()
|
742 |
+
# self.llama_tokenizer.eval()
|
743 |
+
input_embeds, pixel_output = self.prepare_generation_embedding(inputs, web_demo)
|
744 |
+
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=[2277], encounters=1)])
|
745 |
+
outputs = self.llama_model.generate(
|
746 |
+
inputs_embeds=input_embeds,
|
747 |
+
max_new_tokens=inputs['max_tgt_len'],
|
748 |
+
top_p=inputs['top_p'],
|
749 |
+
temperature=inputs['temperature'],
|
750 |
+
do_sample=True,
|
751 |
+
use_cache=True,
|
752 |
+
stopping_criteria=stopping_criteria,
|
753 |
+
)
|
754 |
+
output_text = self.llama_tokenizer.decode(outputs[0][:-2], skip_special_tokens=True)
|
755 |
+
return output_text, pixel_output
|