Spaces:
Running
on
Zero
Running
on
Zero
switch to loading with from_pretrained
Browse files- app.py +1 -2
- generator.py +4 -12
- models.py +17 -3
app.py
CHANGED
@@ -102,8 +102,7 @@ SPEAKER_PROMPTS = {
|
|
102 |
}
|
103 |
|
104 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
105 |
-
|
106 |
-
generator = load_csm_1b(model_path, device)
|
107 |
|
108 |
|
109 |
@spaces.GPU(duration=gpu_timeout)
|
|
|
102 |
}
|
103 |
|
104 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
105 |
+
generator = load_csm_1b(device=device)
|
|
|
106 |
|
107 |
|
108 |
@spaces.GPU(duration=gpu_timeout)
|
generator.py
CHANGED
@@ -5,7 +5,7 @@ from typing import List, Tuple
|
|
5 |
import torch
|
6 |
import torchaudio
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
from models import Model
|
9 |
from moshi.models import loaders
|
10 |
from tokenizers.processors import TemplateProcessing
|
11 |
from transformers import AutoTokenizer
|
@@ -166,17 +166,9 @@ class Generator:
|
|
166 |
return audio
|
167 |
|
168 |
|
169 |
-
def load_csm_1b(
|
170 |
-
|
171 |
-
|
172 |
-
decoder_flavor="llama-100M",
|
173 |
-
text_vocab_size=128256,
|
174 |
-
audio_vocab_size=2051,
|
175 |
-
audio_num_codebooks=32,
|
176 |
-
)
|
177 |
-
model = Model(model_args).to(device=device, dtype=torch.bfloat16)
|
178 |
-
state_dict = torch.load(ckpt_path)
|
179 |
-
model.load_state_dict(state_dict)
|
180 |
|
181 |
generator = Generator(model)
|
182 |
return generator
|
|
|
5 |
import torch
|
6 |
import torchaudio
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
+
from models import Model
|
9 |
from moshi.models import loaders
|
10 |
from tokenizers.processors import TemplateProcessing
|
11 |
from transformers import AutoTokenizer
|
|
|
166 |
return audio
|
167 |
|
168 |
|
169 |
+
def load_csm_1b(device: str = "cuda") -> Generator:
|
170 |
+
model = Model.from_pretrained("sesame/csm-1b")
|
171 |
+
model.to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
generator = Generator(model)
|
174 |
return generator
|
models.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torchtune
|
|
|
6 |
from torchtune.models import llama3_2
|
7 |
|
8 |
|
@@ -95,7 +96,20 @@ class ModelArgs:
|
|
95 |
audio_num_codebooks: int
|
96 |
|
97 |
|
98 |
-
class Model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def __init__(self, args: ModelArgs):
|
100 |
super().__init__()
|
101 |
self.args = args
|
@@ -110,7 +124,7 @@ class Model(nn.Module):
|
|
110 |
self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False)
|
111 |
self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size))
|
112 |
|
113 |
-
def setup_caches(self, max_batch_size: int) ->
|
114 |
"""Setup KV caches and return a causal mask."""
|
115 |
dtype = next(self.parameters()).dtype
|
116 |
device = next(self.parameters()).device
|
|
|
1 |
+
from dataclasses import asdict, dataclass
|
2 |
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torchtune
|
6 |
+
from huggingface_hub import PyTorchModelHubMixin
|
7 |
from torchtune.models import llama3_2
|
8 |
|
9 |
|
|
|
96 |
audio_num_codebooks: int
|
97 |
|
98 |
|
99 |
+
class Model(
|
100 |
+
nn.Module,
|
101 |
+
PyTorchModelHubMixin,
|
102 |
+
repo_url="https://github.com/SesameAILabs/csm",
|
103 |
+
pipeline_tag="text-to-speech",
|
104 |
+
license="apache-2.0",
|
105 |
+
coders={
|
106 |
+
# Tells the class how to serialize and deserialize config.json
|
107 |
+
ModelArgs : (
|
108 |
+
lambda x: asdict(x), # Encoder: how to convert a `ModelArgs` to a valid jsonable value?
|
109 |
+
lambda data: ModelArgs(**data), # Decoder: how to reconstruct a `ModelArgs` from a dictionary?
|
110 |
+
)
|
111 |
+
}
|
112 |
+
):
|
113 |
def __init__(self, args: ModelArgs):
|
114 |
super().__init__()
|
115 |
self.args = args
|
|
|
124 |
self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False)
|
125 |
self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size))
|
126 |
|
127 |
+
def setup_caches(self, max_batch_size: int) -> None:
|
128 |
"""Setup KV caches and return a causal mask."""
|
129 |
dtype = next(self.parameters()).dtype
|
130 |
device = next(self.parameters()).device
|