Spaces:
Sleeping
Sleeping
Update tasks/audio.py
Browse files- tasks/audio.py +1 -2
tasks/audio.py
CHANGED
@@ -72,6 +72,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
72 |
|
73 |
|
74 |
true_labels = test_dataset["label"]
|
|
|
75 |
|
76 |
with torch.no_grad():
|
77 |
for waveforms, labels in test_loader:
|
@@ -80,10 +81,8 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
80 |
# Run Model
|
81 |
outputs = model(waveforms)
|
82 |
predicted_label = torch.argmax(F.softmax(outputs, dim=1), dim=1)
|
83 |
-
|
84 |
true_labels.extend(labels.cpu().numpy())
|
85 |
predicted_labels.extend(predicted_label.cpu().numpy())
|
86 |
-
predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
|
87 |
|
88 |
#--------------------------------------------------------------------------------------------
|
89 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
72 |
|
73 |
|
74 |
true_labels = test_dataset["label"]
|
75 |
+
predictions = []
|
76 |
|
77 |
with torch.no_grad():
|
78 |
for waveforms, labels in test_loader:
|
|
|
81 |
# Run Model
|
82 |
outputs = model(waveforms)
|
83 |
predicted_label = torch.argmax(F.softmax(outputs, dim=1), dim=1)
|
|
|
84 |
true_labels.extend(labels.cpu().numpy())
|
85 |
predicted_labels.extend(predicted_label.cpu().numpy())
|
|
|
86 |
|
87 |
#--------------------------------------------------------------------------------------------
|
88 |
# YOUR MODEL INFERENCE STOPS HERE
|