Spaces:
Sleeping
Sleeping
File size: 9,284 Bytes
c1fa8ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import cohere
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from typing import List, Tuple
import os
from dotenv import load_dotenv
import logging
import json
import gradio as gr
import pandas as pd
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv() # This loads the variables from .env
# Initialize Cohere client, SentenceTransformer model, and QA pipeline
co = cohere.Client(api_key = os.environ.get("COHERE_API_KEY"))
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
def generate_questions(context: str, answer: str) -> List[str]:
try:
response = co.chat(
model="command-r",
message=f"Based on this context: '{context}' and answer: '{answer}', generate 5 diverse questions which when asked to the context returns the answer.",
response_format={
"type": "json_object",
"schema": {
"type": "object",
"required": ["question1", "question2", "question3", "question4", "question5"],
"properties": {
"question1": {"type": "string"},
"question2": {"type": "string"},
"question3": {"type": "string"},
"question4": {"type": "string"},
"question5": {"type": "string"}
}
}
}
)
json_response = response.text
logger.info(f"Raw JSON response: {json_response}")
parsed_response = json.loads(json_response)
questions = [parsed_response[f"question{i}"] for i in range(1, 6)]
return questions
except Exception as e:
logger.error(f"Error in generate_questions: {e}")
return [f"Failed to generate question {i}" for i in range(1, 6)]
def calculate_structural_diversity(questions: List[str]) -> List[float]:
def get_question_type(q):
q = q.lower()
if q.startswith('what'): return 1
elif q.startswith('why'): return 2
elif q.startswith('how'): return 3
elif q.startswith('when'): return 4
elif q.startswith('where'): return 5
else: return 0
lengths = [len(q.split()) for q in questions]
types = [get_question_type(q) for q in questions]
length_scores = [1 - (abs(l - np.mean(lengths)) / np.max(lengths)) for l in lengths]
type_scores = [len(set(types)) / len(types) for _ in types]
return [(l + t) / 2 for l, t in zip(length_scores, type_scores)]
def calculate_semantic_relevance(context: str, answer: str, questions: List[str]) -> List[float]:
context_embedding = sentence_model.encode(context + " " + answer)
question_embeddings = sentence_model.encode(questions)
similarities = [np.dot(context_embedding, q_emb) / (np.linalg.norm(context_embedding) * np.linalg.norm(q_emb))
for q_emb in question_embeddings]
return [(sim + 1) / 2 for sim in similarities] # Normalize to 0-1 range
def check_answer_precision(context: str, questions: List[str], original_answer: str) -> Tuple[List[float], List[str]]:
precision_scores = []
generated_answers = []
for question in questions:
result = qa_pipeline(question=question, context=context)
generated_answer = result['answer']
generated_answers.append(generated_answer)
answer_embedding = sentence_model.encode(original_answer)
generated_embedding = sentence_model.encode(generated_answer)
similarity = np.dot(answer_embedding, generated_embedding) / (np.linalg.norm(answer_embedding) * np.linalg.norm(generated_embedding))
precision_scores.append((similarity + 1) / 2) # Normalize to 0-1 range
return precision_scores, generated_answers
def calculate_composite_scores(sd_scores: List[float], sr_scores: List[float], ap_scores: List[float]) -> List[float]:
return [0.2 * sd + 0.4 * sr + 0.4 * ap for sd, sr, ap in zip(sd_scores, sr_scores, ap_scores)]
def rank_questions_with_details(context: str, answer: str) -> Tuple[pd.DataFrame, List[pd.DataFrame], str]:
questions = generate_questions(context, answer)
sd_scores = calculate_structural_diversity(questions)
sr_scores = calculate_semantic_relevance(context, answer, questions)
ap_scores, generated_answers = check_answer_precision(context, questions, answer)
composite_scores = calculate_composite_scores(sd_scores, sr_scores, ap_scores)
# Create detailed scores dataframe
detailed_scores = pd.DataFrame({
'Question': questions,
'Composite Score': composite_scores,
'Structural Diversity': sd_scores,
'Semantic Relevance': sr_scores,
'Answer Precision': ap_scores,
'Generated Answer': generated_answers
})
detailed_scores = detailed_scores.sort_values('Composite Score', ascending=False).reset_index(drop=True)
# Create separate ranking dataframes for each metric
metrics = ['Composite Score', 'Structural Diversity', 'Semantic Relevance', 'Answer Precision']
rankings = []
for metric in metrics:
df = pd.DataFrame({
'Rank': range(1, 6),
'Question': [questions[i] for i in np.argsort(detailed_scores[metric])[::-1]],
f'{metric}': sorted(detailed_scores[metric], reverse=True)
})
rankings.append(df)
best_question = detailed_scores.iloc[0]['Question']
return detailed_scores, rankings, best_question
# Define sample inputs
samples = [
{
"context": "Albert Einstein is an Austrian scientist, who has completed his higher education in ETH Zurich in Zurich, Switzerland. He was later a faculty at Princeton University.",
"answer": "Switzerland"
},
{
"context": "The Eiffel Tower, located in Paris, France, is one of the most famous landmarks in the world. It was constructed in 1889 as the entrance arch to the 1889 World's Fair. The tower is 324 meters (1,063 ft) tall and is the tallest structure in Paris.",
"answer": "Paris"
},
{
"context": "The Great Wall of China is a series of fortifications and walls built across the historical northern borders of ancient Chinese states and Imperial China to protect against nomadic invasions. It is the largest man-made structure in the world, with a total length of more than 13,000 miles (21,000 kilometers).",
"answer": "China"
}
]
def gradio_interface(context: str, answer: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, str]:
detailed_scores, rankings, best_question = rank_questions_with_details(context, answer)
return (
detailed_scores,
rankings[0], # Composite Score Ranking
rankings[1], # Structural Diversity Ranking
rankings[2], # Semantic Relevance Ranking
rankings[3], # Answer Precision Ranking
f"Best Question: {best_question}"
)
def use_sample(sample_index: int) -> Tuple[str, str]:
return samples[sample_index]["context"], samples[sample_index]["answer"]
# Create Gradio interface with improved layout and sample buttons
with gr.Blocks(theme=gr.themes.Default()) as iface:
gr.Markdown("# Question Generator and Ranker")
gr.Markdown("Enter a context and an answer to generate and rank questions, or use one of the sample inputs.")
with gr.Row():
with gr.Column(scale=1):
context_input = gr.Textbox(lines=5, label="Context")
answer_input = gr.Textbox(lines=2, label="Answer")
submit_button = gr.Button("Generate Questions")
with gr.Row():
sample_buttons = [gr.Button(f"Sample {i+1}") for i in range(3)]
with gr.Column(scale=2):
best_question_output = gr.Textbox(label="Best Question")
detailed_scores_output = gr.DataFrame(label="Detailed Scores")
with gr.Row():
with gr.Column():
composite_ranking_output = gr.DataFrame(label="Composite Score Ranking")
with gr.Column():
structural_diversity_ranking_output = gr.DataFrame(label="Structural Diversity Ranking")
with gr.Row():
with gr.Column():
semantic_relevance_ranking_output = gr.DataFrame(label="Semantic Relevance Ranking")
with gr.Column():
answer_precision_ranking_output = gr.DataFrame(label="Answer Precision Ranking")
submit_button.click(
fn=gradio_interface,
inputs=[context_input, answer_input],
outputs=[
detailed_scores_output,
composite_ranking_output,
structural_diversity_ranking_output,
semantic_relevance_ranking_output,
answer_precision_ranking_output,
best_question_output
]
)
# Set up sample button functionality
for i, button in enumerate(sample_buttons):
button.click(
fn=lambda i=i: use_sample(i),
outputs=[context_input, answer_input]
)
iface.launch() |