# LLM Hallucination Detector Guidelines ## Commands - Setup: `pip install -r requirements.txt` - Configure: Set environment variables `HF_MISTRAL_API_KEY` and `HF_OPENAI_API_KEY` - Run: `python app.py` - Lint: `ruff check app.py` - Format: `black app.py` - Type check: `mypy app.py` ## Code Style - Follow PEP 8 conventions with 4-space indentation - Use type hints with Pydantic for data validation - Write descriptive docstrings using triple quotes - Name variables/functions in snake_case, classes in PascalCase - Organize imports: stdlib first, then third-party, then local - Exception handling: use try/except blocks with specific exceptions - Constants should be UPPERCASE and defined at class/module level - Prefer f-strings over other string formatting methods ## Architecture - App uses Gradio for UI, SQLite for persistence - LLM integration with Mistral Large and OpenAI o3-mini - Paraphrase-based approach for hallucination detection - Maintain clean separation between UI and backend logic