sergiomar73 commited on
Commit
48307cf
·
1 Parent(s): 987fcaa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
2
  from sentence_transformers import SentenceTransformer, util
3
  import numpy as np
4
  import pandas as pd
 
5
  import spacy
6
  import torch
7
  import plotly.express as px
@@ -63,7 +64,7 @@ def compare_text(transcript, categories, threshold):
63
  phrases = torch.stack(phrases_list)
64
  cosine_scores = util.cos_sim(embeddings, phrases).numpy()
65
  max_scores = np.max(cosine_scores, axis=1)
66
- df_cosines[df_category.iloc[0,2]] = max_scores.round(decimals = 3)
67
  for num_sentence, scores in enumerate(cosine_scores):
68
  for num_phrase, score in enumerate(scores):
69
  if score >= threshold:
@@ -72,12 +73,11 @@ def compare_text(transcript, categories, threshold):
72
  'sentence': sentences[num_sentence],
73
  'phrase': df_category.at[num_phrase,'example'],
74
  'category': df_category.at[num_phrase,'label'],
75
- 'similarity': score
76
  }
77
  df_results = df_results.append(new_row, ignore_index=True)
78
 
79
- # df_cosines = df_cosines.round(decimals = 3)
80
- df_results = df_results.sort_values(['line','similarity'],ascending=[True,False]).round(decimals = 3)
81
 
82
  df_summary = pd.DataFrame(df_cosines.max(numeric_only=True),columns=['similarity'])
83
  df_summary['ok'] = np.where(df_summary['similarity'] > threshold, True, False)
@@ -99,8 +99,7 @@ def compare_text(transcript, categories, threshold):
99
  fig.update_traces(textfont_size=24, textangle=0, textposition="inside", cliponaxis=False)
100
  fig.update_yaxes(range=[0, 1])
101
 
102
- df_results = df_results.round(decimals = 3)
103
- df_summary = df_summary['similarity'].round(decimals = 2)
104
 
105
  return df_summary.to_dict(), fig, df_cosines, df_results
106
 
 
2
  from sentence_transformers import SentenceTransformer, util
3
  import numpy as np
4
  import pandas as pd
5
+ import math
6
  import spacy
7
  import torch
8
  import plotly.express as px
 
64
  phrases = torch.stack(phrases_list)
65
  cosine_scores = util.cos_sim(embeddings, phrases).numpy()
66
  max_scores = np.max(cosine_scores, axis=1)
67
+ df_cosines[df_category.iloc[0,2]] = math.ceil(max_scores * 1000) / 1000.0
68
  for num_sentence, scores in enumerate(cosine_scores):
69
  for num_phrase, score in enumerate(scores):
70
  if score >= threshold:
 
73
  'sentence': sentences[num_sentence],
74
  'phrase': df_category.at[num_phrase,'example'],
75
  'category': df_category.at[num_phrase,'label'],
76
+ 'similarity': math.ceil(score * 1000) / 1000.0
77
  }
78
  df_results = df_results.append(new_row, ignore_index=True)
79
 
80
+ df_results = df_results.sort_values(['line','similarity'],ascending=[True,False])
 
81
 
82
  df_summary = pd.DataFrame(df_cosines.max(numeric_only=True),columns=['similarity'])
83
  df_summary['ok'] = np.where(df_summary['similarity'] > threshold, True, False)
 
99
  fig.update_traces(textfont_size=24, textangle=0, textposition="inside", cliponaxis=False)
100
  fig.update_yaxes(range=[0, 1])
101
 
102
+ df_summary = df_summary['similarity']
 
103
 
104
  return df_summary.to_dict(), fig, df_cosines, df_results
105