sergiomar73 commited on
Commit
33cc46f
·
1 Parent(s): 9132037

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -55,9 +55,8 @@ def compare_text(transcript, categories, threshold):
55
  embeddings = model.encode(sentences, convert_to_tensor=True)
56
  # Categories
57
  df_category_list = process_categories(categories)
58
- df_cosines = pd.DataFrame()
59
  df_results = pd.DataFrame(columns=['line', 'sentence', 'phrase', 'category', 'similarity'])
60
- # df_cosines['line'] += 1
61
  for _, df_category in enumerate(df_category_list):
62
  df_category.reset_index(drop=True, inplace=True)
63
  phrases_list = df_category["embeddings"].values.tolist()
@@ -77,7 +76,7 @@ def compare_text(transcript, categories, threshold):
77
  }
78
  df_results = df_results.append(new_row, ignore_index=True)
79
 
80
- df_by_line = df_cosines.round(decimals = 3)
81
  df_results = df_results.sort_values(['line','similarity'],ascending=[True,False]).round(decimals = 3)
82
 
83
  df_summary = pd.DataFrame(df_cosines.max(numeric_only=True),columns=['similarity'])
@@ -103,7 +102,7 @@ def compare_text(transcript, categories, threshold):
103
  df_results = df_results.round(decimals = 3)
104
  df_summary = df_summary['similarity'].round(decimals = 2)
105
 
106
- return df_summary.to_dict(), fig, df_by_line, df_results
107
 
108
  categories = """Hello=Hello, how are you doing today?;Hi, everybody;Hi;My name's Johnny
109
  What=most advanced conversation intelligence and AI powered coaching platform;a software platform that helps people reach their potential;for communicating and connecting;empowered by behavioral science;uses artificial intelligence;drives performance outcomes for customer facing teams;help them sell more;help them deliver better experiences
 
55
  embeddings = model.encode(sentences, convert_to_tensor=True)
56
  # Categories
57
  df_category_list = process_categories(categories)
58
+ df_cosines = pd.DataFrame(sentences, columns=['sentence'],index=list(range(1,len(sentences)+1)))
59
  df_results = pd.DataFrame(columns=['line', 'sentence', 'phrase', 'category', 'similarity'])
 
60
  for _, df_category in enumerate(df_category_list):
61
  df_category.reset_index(drop=True, inplace=True)
62
  phrases_list = df_category["embeddings"].values.tolist()
 
76
  }
77
  df_results = df_results.append(new_row, ignore_index=True)
78
 
79
+ df_cosines = df_cosines.round(decimals = 3)
80
  df_results = df_results.sort_values(['line','similarity'],ascending=[True,False]).round(decimals = 3)
81
 
82
  df_summary = pd.DataFrame(df_cosines.max(numeric_only=True),columns=['similarity'])
 
102
  df_results = df_results.round(decimals = 3)
103
  df_summary = df_summary['similarity'].round(decimals = 2)
104
 
105
+ return df_summary.to_dict(), fig, df_cosines, df_results
106
 
107
  categories = """Hello=Hello, how are you doing today?;Hi, everybody;Hi;My name's Johnny
108
  What=most advanced conversation intelligence and AI powered coaching platform;a software platform that helps people reach their potential;for communicating and connecting;empowered by behavioral science;uses artificial intelligence;drives performance outcomes for customer facing teams;help them sell more;help them deliver better experiences