|
import csv
|
|
from pathlib import Path
|
|
from shutil import rmtree
|
|
from typing import List, Tuple, Dict, Union, Optional, Any, Iterable
|
|
from tqdm import tqdm
|
|
|
|
from llama_cpp import Llama
|
|
|
|
import psutil
|
|
import requests
|
|
from requests.exceptions import MissingSchema
|
|
|
|
import torch
|
|
import gradio as gr
|
|
|
|
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled
|
|
from huggingface_hub import hf_hub_download, list_repo_tree, list_repo_files, repo_info, repo_exists, snapshot_download
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from config import (
|
|
LLM_MODELS_PATH,
|
|
EMBED_MODELS_PATH,
|
|
GENERATE_KWARGS,
|
|
LLAMA_MODEL_KWARGS,
|
|
LOADER_CLASSES,
|
|
)
|
|
|
|
|
|
|
|
CHAT_HISTORY = List[Optional[Dict[str, Optional[str]]]]
|
|
LLM_MODEL_DICT = Dict[str, Llama]
|
|
EMBED_MODEL_DICT = Dict[str, Embeddings]
|
|
|
|
|
|
|
|
|
|
|
|
def get_memory_usage() -> str:
|
|
print_memory = ''
|
|
|
|
memory_type = 'Disk'
|
|
psutil_stats = psutil.disk_usage('.')
|
|
memory_total = psutil_stats.total / 1024**3
|
|
memory_usage = psutil_stats.used / 1024**3
|
|
print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n'
|
|
|
|
memory_type = 'CPU'
|
|
psutil_stats = psutil.virtual_memory()
|
|
memory_total = psutil_stats.total / 1024**3
|
|
memory_usage = memory_total - (psutil_stats.available / 1024**3)
|
|
print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n'
|
|
|
|
if torch.cuda.is_available():
|
|
memory_type = 'GPU'
|
|
memory_free, memory_total = torch.cuda.mem_get_info()
|
|
memory_usage = memory_total - memory_free
|
|
print_memory += f'{memory_type} Menory Usage: {memory_usage / 1024**3:.2f} / {memory_total:.2f} GB\n'
|
|
|
|
print_memory = f'---------------\n{print_memory}---------------'
|
|
return print_memory
|
|
|
|
|
|
|
|
def clear_documents(documents: Iterable[Document]) -> Iterable[Document]:
|
|
def clear_text(text: str) -> str:
|
|
lines = text.split('\n')
|
|
lines = [line for line in lines if len(line.strip()) > 2]
|
|
text = '\n'.join(lines).strip()
|
|
return text
|
|
|
|
output_documents = []
|
|
for document in documents:
|
|
text = clear_text(document.page_content)
|
|
if len(text) > 10:
|
|
document.page_content = text
|
|
output_documents.append(document)
|
|
return output_documents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def download_file(file_url: str, file_path: Union[str, Path]) -> None:
|
|
response = requests.get(file_url, stream=True)
|
|
if response.status_code != 200:
|
|
raise Exception(f'The file is not available for download at the link: {file_url}')
|
|
total_size = int(response.headers.get('content-length', 0))
|
|
progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True)
|
|
progress_gradio = gr.Progress()
|
|
completed_size = 0
|
|
with open(file_path, 'wb') as file:
|
|
for data in response.iter_content(chunk_size=4096):
|
|
size = file.write(data)
|
|
progress_tqdm.update(size)
|
|
completed_size += size
|
|
desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB'
|
|
progress_gradio(completed_size/total_size, desc=desc)
|
|
|
|
|
|
|
|
def load_llm_model(model_repo: str, model_file: str) -> Tuple[LLM_MODEL_DICT, str, str]:
|
|
llm_model = None
|
|
load_log = ''
|
|
support_system_role = False
|
|
|
|
if isinstance(model_file, list):
|
|
load_log += 'No model selected\n'
|
|
return {'llm_model': llm_model}, support_system_role, load_log
|
|
|
|
if '(' in model_file:
|
|
model_file = model_file.split('(')[0].rstrip()
|
|
|
|
progress = gr.Progress()
|
|
progress(0.3, desc='Step 1/2: Download the GGUF file')
|
|
model_path = LLM_MODELS_PATH / model_file
|
|
|
|
if model_path.is_file():
|
|
load_log += f'Model {model_file} already loaded, reinitializing\n'
|
|
else:
|
|
try:
|
|
gguf_url = f'https://huggingface.co/{model_repo}/resolve/main/{model_file}'
|
|
download_file(gguf_url, model_path)
|
|
load_log += f'Model {model_file} loaded\n'
|
|
except Exception as ex:
|
|
model_path = ''
|
|
load_log += f'Error downloading model, error code:\n{ex}\n'
|
|
|
|
if model_path:
|
|
progress(0.7, desc='Step 2/2: Initialize the model')
|
|
try:
|
|
print('----------')
|
|
print(str(model_path))
|
|
llm_model = Llama(model_path=str(model_path), **LLAMA_MODEL_KWARGS)
|
|
support_system_role = 'System role not supported' not in llm_model.metadata['tokenizer.chat_template']
|
|
load_log += f'Model {model_file} initialized, max context size is {llm_model.n_ctx()} tokens\n'
|
|
except Exception as ex:
|
|
load_log += f'Error initializing model, error code:\n{ex}\n'
|
|
|
|
llm_model = {'llm_model': llm_model}
|
|
return llm_model, support_system_role, load_log
|
|
|
|
|
|
|
|
def load_embed_model(model_repo: str) -> Tuple[Dict[str, HuggingFaceEmbeddings], str]:
|
|
embed_model = None
|
|
load_log = ''
|
|
|
|
if isinstance(model_repo, list):
|
|
load_log = 'No model selected'
|
|
return embed_model, load_log
|
|
|
|
progress = gr.Progress()
|
|
folder_name = model_repo.replace('/', '_')
|
|
folder_path = EMBED_MODELS_PATH / folder_name
|
|
if Path(folder_path).is_dir():
|
|
load_log += f'Reinitializing model {model_repo} \n'
|
|
else:
|
|
progress(0.5, desc='Step 1/2: Download model repository')
|
|
snapshot_download(
|
|
repo_id=model_repo,
|
|
local_dir=folder_path,
|
|
ignore_patterns='*.h5',
|
|
)
|
|
load_log += f'Model {model_repo} loaded\n'
|
|
|
|
progress(0.7, desc='Шаг 2/2: Инициализация модели')
|
|
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
|
embed_model = HuggingFaceEmbeddings(
|
|
model_name=str(folder_path),
|
|
model_kwargs=model_kwargs,
|
|
|
|
)
|
|
load_log += f'Embeddings model {model_repo} initialized\n'
|
|
load_log += f'Please upload documents and initialize database again\n'
|
|
embed_model = {'embed_model': embed_model}
|
|
return embed_model, load_log
|
|
|
|
|
|
|
|
def add_new_model_repo(new_model_repo: str, model_repos: List[str]) -> Tuple[gr.Dropdown, str]:
|
|
load_log = ''
|
|
repo = new_model_repo.strip()
|
|
if repo:
|
|
repo = repo.split('/')[-2:]
|
|
if len(repo) == 2:
|
|
repo = '/'.join(repo).split('?')[0]
|
|
if repo_exists(repo) and repo not in model_repos:
|
|
model_repos.insert(0, repo)
|
|
load_log += f'Model repository {repo} successfully added\n'
|
|
else:
|
|
load_log += 'Invalid HF repository name or model already in the list\n'
|
|
else:
|
|
load_log += 'Invalid link to HF repository\n'
|
|
else:
|
|
load_log += 'Empty line in HF repository field\n'
|
|
model_repo_dropdown = gr.Dropdown(choices=model_repos, value=model_repos[0])
|
|
return model_repo_dropdown, load_log
|
|
|
|
|
|
|
|
def get_gguf_model_names(model_repo: str) -> gr.Dropdown:
|
|
repo_files = list(list_repo_tree(model_repo))
|
|
repo_files = [file for file in repo_files if file.path.endswith('.gguf')]
|
|
model_paths = [f'{file.path} ({file.size / 1000 ** 3:.2f}G)' for file in repo_files]
|
|
model_paths_dropdown = gr.Dropdown(
|
|
choices=model_paths,
|
|
value=model_paths[0],
|
|
label='GGUF model file',
|
|
)
|
|
return model_paths_dropdown
|
|
|
|
|
|
|
|
def clear_llm_folder(gguf_filename: str) -> None:
|
|
if gguf_filename is None:
|
|
gr.Info(f'The name of the model file that does not need to be deleted is not selected.')
|
|
return
|
|
if '(' in gguf_filename:
|
|
gguf_filename = gguf_filename.split('(')[0].rstrip()
|
|
for path in LLM_MODELS_PATH.iterdir():
|
|
if path.name == gguf_filename:
|
|
continue
|
|
if path.is_file():
|
|
path.unlink(missing_ok=True)
|
|
gr.Info(f'All files removed from directory {LLM_MODELS_PATH} except {gguf_filename}')
|
|
|
|
|
|
|
|
def clear_embed_folder(model_repo: str) -> None:
|
|
if model_repo is None:
|
|
gr.Info(f'The name of the model that does not need to be deleted is not selected.')
|
|
return
|
|
model_folder_name = model_repo.replace('/', '_')
|
|
for path in EMBED_MODELS_PATH.iterdir():
|
|
if path.name == model_folder_name:
|
|
continue
|
|
if path.is_dir():
|
|
rmtree(path, ignore_errors=True)
|
|
gr.Info(f'All directories have been removed from the {EMBED_MODELS_PATH} directory except {model_folder_name}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_subtitles_available(yt_video_link: str, target_lang: str) -> Tuple[bool, str]:
|
|
video_id = yt_video_link.split('watch?v=')[-1].split('&')[0]
|
|
load_log = ''
|
|
available = True
|
|
try:
|
|
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
|
|
try:
|
|
transcript = transcript_list.find_transcript([target_lang])
|
|
if transcript.is_generated:
|
|
load_log += f'Automatic subtitles will be loaded, manual ones are not available for video {yt_video_link}\n'
|
|
else:
|
|
load_log += f'Manual subtitles will be downloaded for the video {yt_video_link}\n'
|
|
except NoTranscriptFound:
|
|
load_log += f'Subtitle language {target_lang} is not available for video {yt_video_link}\n'
|
|
available = False
|
|
except TranscriptsDisabled:
|
|
load_log += f'Invalid video url ({yt_video_link}) or current server IP is blocked for YouTube\n'
|
|
available = False
|
|
return available, load_log
|
|
|
|
|
|
|
|
|
|
|
|
def load_documents_from_files(upload_files: List[str]) -> Tuple[List[Document], str]:
|
|
load_log = ''
|
|
documents = []
|
|
for upload_file in upload_files:
|
|
file_extension = f".{upload_file.split('.')[-1]}"
|
|
if file_extension in LOADER_CLASSES:
|
|
loader_class = LOADER_CLASSES[file_extension]
|
|
loader_kwargs = {}
|
|
if file_extension == '.csv':
|
|
with open(upload_file) as csvfile:
|
|
delimiter = csv.Sniffer().sniff(csvfile.read(4096)).delimiter
|
|
loader_kwargs = {'csv_args': {'delimiter': delimiter}}
|
|
try:
|
|
load_documents = loader_class(upload_file, **loader_kwargs).load()
|
|
documents.extend(load_documents)
|
|
except Exception as ex:
|
|
load_log += f'Error uploading file {upload_file}\n'
|
|
load_log += f'Error code: {ex}\n'
|
|
continue
|
|
else:
|
|
load_log += f'Unsupported file format {upload_file}\n'
|
|
continue
|
|
return documents, load_log
|
|
|
|
|
|
|
|
def load_documents_from_links(
|
|
web_links: str,
|
|
subtitles_lang: str,
|
|
) -> Tuple[List[Document], str]:
|
|
|
|
load_log = ''
|
|
documents = []
|
|
loader_class_kwargs = {}
|
|
web_links = [web_link.strip() for web_link in web_links.split('\n') if web_link.strip()]
|
|
for web_link in web_links:
|
|
if 'youtube.com' in web_link:
|
|
available, log = check_subtitles_available(web_link, subtitles_lang)
|
|
load_log += log
|
|
if not available:
|
|
continue
|
|
loader_class = LOADER_CLASSES['youtube'].from_youtube_url
|
|
loader_class_kwargs = {'language': subtitles_lang}
|
|
else:
|
|
loader_class = LOADER_CLASSES['web']
|
|
|
|
try:
|
|
if requests.get(web_link).status_code != 200:
|
|
load_log += f'Ссылка недоступна для Python requests: {web_link}\n'
|
|
continue
|
|
load_documents = loader_class(web_link, **loader_class_kwargs).load()
|
|
if len(load_documents) == 0:
|
|
load_log += f'No text chunks were found at the link: {web_link}\n'
|
|
continue
|
|
documents.extend(load_documents)
|
|
except MissingSchema:
|
|
load_log += f'Invalid link: {web_link}\n'
|
|
continue
|
|
except Exception as ex:
|
|
load_log += f'Error loading data by web loader at link: {web_link}\n'
|
|
load_log += f'Error code: {ex}\n'
|
|
continue
|
|
return documents, load_log
|
|
|
|
|
|
|
|
def load_documents_and_create_db(
|
|
upload_files: Optional[List[str]],
|
|
web_links: str,
|
|
subtitles_lang: str,
|
|
chunk_size: int,
|
|
chunk_overlap: int,
|
|
embed_model_dict: EMBED_MODEL_DICT,
|
|
) -> Tuple[List[Document], Optional[VectorStore], str]:
|
|
|
|
load_log = ''
|
|
all_documents = []
|
|
db = None
|
|
progress = gr.Progress()
|
|
|
|
embed_model = embed_model_dict.get('embed_model')
|
|
if embed_model is None:
|
|
load_log += 'Embeddings model not initialized, DB cannot be created'
|
|
return all_documents, db, load_log
|
|
|
|
if upload_files is None and not web_links:
|
|
load_log = 'No files or links selected'
|
|
return all_documents, db, load_log
|
|
|
|
if upload_files is not None:
|
|
progress(0.3, desc='Step 1/2: Upload documents from files')
|
|
docs, log = load_documents_from_files(upload_files)
|
|
all_documents.extend(docs)
|
|
load_log += log
|
|
|
|
if web_links:
|
|
progress(0.3 if upload_files is None else 0.5, desc='Step 1/2: Upload documents via links')
|
|
docs, log = load_documents_from_links(web_links, subtitles_lang)
|
|
all_documents.extend(docs)
|
|
load_log += log
|
|
|
|
if len(all_documents) == 0:
|
|
load_log += 'Download was interrupted because no documents were extracted\n'
|
|
load_log += 'RAG mode cannot be activated'
|
|
return all_documents, db, load_log
|
|
|
|
load_log += f'Documents loaded: {len(all_documents)}\n'
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
)
|
|
documents = text_splitter.split_documents(all_documents)
|
|
documents = clear_documents(documents)
|
|
load_log += f'Documents are divided, number of text chunks: {len(documents)}\n'
|
|
|
|
progress(0.7, desc='Step 2/2: Initialize DB')
|
|
db = FAISS.from_documents(documents=documents, embedding=embed_model)
|
|
load_log += 'DB is initialized, RAG mode is activated and can be activated in the Chatbot tab'
|
|
return documents, db, load_log
|
|
|
|
|
|
|
|
|
|
|
|
def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]:
|
|
|
|
chatbot.append({'role': 'user', 'content': user_message})
|
|
return '', chatbot
|
|
|
|
|
|
|
|
def update_user_message_with_context(
|
|
chatbot: CHAT_HISTORY,
|
|
rag_mode: bool,
|
|
db: VectorStore,
|
|
k: Union[int, str],
|
|
score_threshold: float,
|
|
context_template: str,
|
|
) -> Tuple[str, CHAT_HISTORY]:
|
|
|
|
user_message = chatbot[-1]['content']
|
|
user_message_with_context = ''
|
|
|
|
if '{user_message}' not in context_template and '{context}' not in context_template:
|
|
gr.Info('Context template must include {user_message} and {context}')
|
|
return user_message_with_context
|
|
|
|
if db is not None and rag_mode and user_message.strip():
|
|
if k == 'all':
|
|
k = len(db.docstore._dict)
|
|
docs_and_distances = db.similarity_search_with_relevance_scores(
|
|
user_message,
|
|
k=k,
|
|
score_threshold=score_threshold,
|
|
)
|
|
if len(docs_and_distances) > 0:
|
|
retriever_context = '\n\n'.join([doc[0].page_content for doc in docs_and_distances])
|
|
user_message_with_context = context_template.format(
|
|
user_message=user_message,
|
|
context=retriever_context,
|
|
)
|
|
return user_message_with_context
|
|
|
|
|
|
|
|
def get_llm_response(
|
|
chatbot: CHAT_HISTORY,
|
|
llm_model_dict: LLM_MODEL_DICT,
|
|
user_message_with_context: str,
|
|
rag_mode: bool,
|
|
system_prompt: str,
|
|
support_system_role: bool,
|
|
history_len: int,
|
|
do_sample: bool,
|
|
*generate_args,
|
|
) -> CHAT_HISTORY:
|
|
|
|
llm_model = llm_model_dict.get('llm_model')
|
|
if llm_model is None:
|
|
gr.Info('Model not initialized')
|
|
yield chatbot[:-1]
|
|
return
|
|
|
|
gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args))
|
|
gen_kwargs['top_k'] = int(gen_kwargs['top_k'])
|
|
if not do_sample:
|
|
gen_kwargs['top_p'] = 0.0
|
|
gen_kwargs['top_k'] = 1
|
|
gen_kwargs['repeat_penalty'] = 1.0
|
|
|
|
user_message = chatbot[-1]['content']
|
|
if not user_message.strip():
|
|
yield chatbot[:-1]
|
|
return
|
|
|
|
if rag_mode:
|
|
if user_message_with_context:
|
|
user_message = user_message_with_context
|
|
else:
|
|
gr.Info((
|
|
'No documents relevant to the query were found, generation in RAG mode is not possible.\n'
|
|
'Or Context template is specified incorrectly.\n'
|
|
'Try reducing searh_score_threshold or disable RAG mode for normal generation'
|
|
))
|
|
yield chatbot[:-1]
|
|
return
|
|
|
|
messages = []
|
|
if support_system_role and system_prompt:
|
|
messages.append({'role': 'system', 'content': system_prompt})
|
|
|
|
if history_len != 0:
|
|
messages.extend(chatbot[:-1][-(history_len*2):])
|
|
|
|
messages.append({'role': 'user', 'content': user_message})
|
|
stream_response = llm_model.create_chat_completion(
|
|
messages=messages,
|
|
stream=True,
|
|
**gen_kwargs,
|
|
)
|
|
try:
|
|
chatbot.append({'role': 'assistant', 'content': ''})
|
|
for chunk in stream_response:
|
|
token = chunk['choices'][0]['delta'].get('content')
|
|
if token is not None:
|
|
chatbot[-1]['content'] += token
|
|
yield chatbot
|
|
except Exception as ex:
|
|
gr.Info(f'Error generating response, error code: {ex}')
|
|
yield chatbot[:-1]
|
|
return
|
|
|