Spaces:
Sleeping
Sleeping
Update src/vector_db.py
Browse files- src/vector_db.py +11 -13
src/vector_db.py
CHANGED
@@ -17,9 +17,7 @@ class VectorDB:
|
|
17 |
db_location = ''
|
18 |
|
19 |
def __init__(self, emb_model, db_location, actions_list_file_path, num_sub_vectors, batch_size):
|
20 |
-
self.
|
21 |
-
self.db_location = db_location
|
22 |
-
|
23 |
emb_config = AutoConfig.from_pretrained(emb_model)
|
24 |
emb_dimension = emb_config.hidden_size
|
25 |
|
@@ -50,7 +48,7 @@ class VectorDB:
|
|
50 |
pa.field(self.name_column, pa.string())
|
51 |
]
|
52 |
)
|
53 |
-
tbl = db.create_table(
|
54 |
|
55 |
|
56 |
df = pd.read_csv(actions_list_file_path)
|
@@ -76,23 +74,23 @@ class VectorDB:
|
|
76 |
tbl.add(df)
|
77 |
except:
|
78 |
print(f"batch {i} was skipped")
|
|
|
|
|
|
|
79 |
print("Vector generation done.")
|
80 |
|
81 |
|
82 |
-
def get_embedding_db_as_pandas(self):
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
|
88 |
|
89 |
def retrieve_prefiltered_hits(self, query, k):
|
90 |
-
db = lancedb.connect(".lancedb")
|
91 |
-
table = db.open_table(self.table_name)
|
92 |
-
retriever = SentenceTransformer(self.emb_model)
|
93 |
|
94 |
-
query_vec = retriever.encode(query)
|
95 |
-
documents = table.search(query_vec, vector_column_name=self.vector_column).limit(k).to_list()
|
96 |
names = [doc[self.name_column] for doc in documents]
|
97 |
descriptions = [doc[self.description_column] for doc in documents]
|
98 |
|
|
|
17 |
db_location = ''
|
18 |
|
19 |
def __init__(self, emb_model, db_location, actions_list_file_path, num_sub_vectors, batch_size):
|
20 |
+
self.retriever = SentenceTransformer(emb_model)
|
|
|
|
|
21 |
emb_config = AutoConfig.from_pretrained(emb_model)
|
22 |
emb_dimension = emb_config.hidden_size
|
23 |
|
|
|
48 |
pa.field(self.name_column, pa.string())
|
49 |
]
|
50 |
)
|
51 |
+
tbl = db.create_table(table_name, schema=schema, mode="overwrite")
|
52 |
|
53 |
|
54 |
df = pd.read_csv(actions_list_file_path)
|
|
|
74 |
tbl.add(df)
|
75 |
except:
|
76 |
print(f"batch {i} was skipped")
|
77 |
+
|
78 |
+
self.db = db
|
79 |
+
self.table = tbl
|
80 |
print("Vector generation done.")
|
81 |
|
82 |
|
83 |
+
# def get_embedding_db_as_pandas(self):
|
84 |
+
# db = lancedb.connect(self.db_location)
|
85 |
+
# tbl = db.open_table(self.table_name)
|
86 |
+
# return tbl.to_pandas()
|
87 |
|
88 |
|
89 |
|
90 |
def retrieve_prefiltered_hits(self, query, k):
|
|
|
|
|
|
|
91 |
|
92 |
+
query_vec = self.retriever.encode(query)
|
93 |
+
documents = self.table.search(query_vec, vector_column_name=self.vector_column).limit(k).to_list()
|
94 |
names = [doc[self.name_column] for doc in documents]
|
95 |
descriptions = [doc[self.description_column] for doc in documents]
|
96 |
|