Spaces:
Sleeping
Sleeping
Included GAN and Diffusion model also
Browse files
app.py
CHANGED
@@ -5,12 +5,12 @@ import torch.nn as nn
|
|
5 |
import numpy as np
|
6 |
from torchvision import transforms
|
7 |
import cv2
|
8 |
-
|
9 |
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
|
10 |
|
|
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
-
# ----------------- Load Human Parser Model
|
14 |
processor = AutoImageProcessor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
|
15 |
parser_model = SegformerForSemanticSegmentation.from_pretrained(
|
16 |
"matei-dorian/segformer-b5-finetuned-human-parsing"
|
@@ -60,12 +60,6 @@ class UNetGenerator(nn.Module):
|
|
60 |
u4 = self.up4(torch.cat([u3, d1], dim=1))
|
61 |
return u4
|
62 |
|
63 |
-
# ----------------- Load UNet Try-On Model -----------------
|
64 |
-
tryon_model = UNetGenerator().to(device)
|
65 |
-
checkpoint = torch.load("viton_unet_full_checkpoint.pth", map_location=device)
|
66 |
-
tryon_model.load_state_dict(checkpoint['model_state_dict'])
|
67 |
-
tryon_model.eval()
|
68 |
-
|
69 |
# ----------------- Image Transforms -----------------
|
70 |
img_transform = transforms.Compose([
|
71 |
transforms.Resize((256, 192)),
|
@@ -85,39 +79,60 @@ def generate_agnostic(image: Image.Image, segmentation):
|
|
85 |
img_np = np.array(image.resize((192, 256)))
|
86 |
agnostic_np = img_np.copy()
|
87 |
segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (192, 256), interpolation=cv2.INTER_NEAREST)
|
88 |
-
|
|
|
|
|
89 |
return Image.fromarray(agnostic_np)
|
90 |
|
91 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
agnostic_tensor = img_transform(agnostic_img).unsqueeze(0).to(device)
|
93 |
cloth_tensor = img_transform(cloth_img).unsqueeze(0).to(device)
|
94 |
input_tensor = torch.cat([agnostic_tensor, cloth_tensor], dim=1)
|
95 |
|
96 |
with torch.no_grad():
|
97 |
-
output =
|
98 |
output_img = output.squeeze(0).cpu().permute(1, 2, 0).numpy()
|
|
|
99 |
output_img = (output_img * 255).astype(np.uint8)
|
100 |
return Image.fromarray(output_img)
|
101 |
|
102 |
-
# -----------------
|
103 |
-
def virtual_tryon(person_image, cloth_image):
|
104 |
segmentation = get_segmentation(person_image)
|
105 |
agnostic = generate_agnostic(person_image, segmentation)
|
106 |
-
|
|
|
107 |
return agnostic, result
|
108 |
|
|
|
109 |
demo = gr.Interface(
|
110 |
fn=virtual_tryon,
|
111 |
inputs=[
|
112 |
gr.Image(type="pil", label="Person Image"),
|
113 |
-
gr.Image(type="pil", label="Cloth Image")
|
|
|
114 |
],
|
115 |
outputs=[
|
116 |
gr.Image(type="pil", label="Agnostic (Torso Masked)"),
|
117 |
gr.Image(type="pil", label="Virtual Try-On Output")
|
118 |
],
|
119 |
-
title="👕 Virtual Try-On
|
120 |
-
description="Upload a person image and a
|
121 |
)
|
122 |
|
123 |
if __name__ == "__main__":
|
|
|
5 |
import numpy as np
|
6 |
from torchvision import transforms
|
7 |
import cv2
|
|
|
8 |
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
|
9 |
|
10 |
+
# ----------------- Device -----------------
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
+
# ----------------- Load Human Parser Model -----------------
|
14 |
processor = AutoImageProcessor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
|
15 |
parser_model = SegformerForSemanticSegmentation.from_pretrained(
|
16 |
"matei-dorian/segformer-b5-finetuned-human-parsing"
|
|
|
60 |
u4 = self.up4(torch.cat([u3, d1], dim=1))
|
61 |
return u4
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# ----------------- Image Transforms -----------------
|
64 |
img_transform = transforms.Compose([
|
65 |
transforms.Resize((256, 192)),
|
|
|
79 |
img_np = np.array(image.resize((192, 256)))
|
80 |
agnostic_np = img_np.copy()
|
81 |
segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (192, 256), interpolation=cv2.INTER_NEAREST)
|
82 |
+
clothing_labels = [4, 5, 6, 7, 8, 16]
|
83 |
+
for label in clothing_labels:
|
84 |
+
agnostic_np[segmentation_resized == label] = [128, 128, 128]
|
85 |
return Image.fromarray(agnostic_np)
|
86 |
|
87 |
+
def load_model(model_type):
|
88 |
+
model = UNetGenerator().to(device)
|
89 |
+
if model_type == "UNet":
|
90 |
+
checkpoint = torch.load("viton_unet_full_checkpoint.pth", map_location=device)
|
91 |
+
elif model_type == "GAN":
|
92 |
+
checkpoint = torch.load("viton_gan_generator_checkpoint.pth", map_location=device)
|
93 |
+
elif model_type == "Diffusion":
|
94 |
+
checkpoint = torch.load("viton_diffusion_generator_checkpoint.pth", map_location=device)
|
95 |
+
else:
|
96 |
+
raise ValueError("Invalid model type")
|
97 |
+
|
98 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
99 |
+
model.eval()
|
100 |
+
return model
|
101 |
+
|
102 |
+
def generate_tryon_output(agnostic_img, cloth_img, model):
|
103 |
agnostic_tensor = img_transform(agnostic_img).unsqueeze(0).to(device)
|
104 |
cloth_tensor = img_transform(cloth_img).unsqueeze(0).to(device)
|
105 |
input_tensor = torch.cat([agnostic_tensor, cloth_tensor], dim=1)
|
106 |
|
107 |
with torch.no_grad():
|
108 |
+
output = model(input_tensor)
|
109 |
output_img = output.squeeze(0).cpu().permute(1, 2, 0).numpy()
|
110 |
+
output_img = (output_img + 1) / 2
|
111 |
output_img = (output_img * 255).astype(np.uint8)
|
112 |
return Image.fromarray(output_img)
|
113 |
|
114 |
+
# ----------------- Inference Pipeline -----------------
|
115 |
+
def virtual_tryon(person_image, cloth_image, model_type):
|
116 |
segmentation = get_segmentation(person_image)
|
117 |
agnostic = generate_agnostic(person_image, segmentation)
|
118 |
+
model = load_model(model_type)
|
119 |
+
result = generate_tryon_output(agnostic, cloth_image, model)
|
120 |
return agnostic, result
|
121 |
|
122 |
+
# ----------------- Gradio Interface -----------------
|
123 |
demo = gr.Interface(
|
124 |
fn=virtual_tryon,
|
125 |
inputs=[
|
126 |
gr.Image(type="pil", label="Person Image"),
|
127 |
+
gr.Image(type="pil", label="Cloth Image"),
|
128 |
+
gr.Radio(choices=["UNet", "GAN", "Diffusion"], label="Model Type", value="UNet")
|
129 |
],
|
130 |
outputs=[
|
131 |
gr.Image(type="pil", label="Agnostic (Torso Masked)"),
|
132 |
gr.Image(type="pil", label="Virtual Try-On Output")
|
133 |
],
|
134 |
+
title="👕 Virtual Try-On App",
|
135 |
+
description="Upload a person image and a clothing image, select a model (UNet, GAN, Diffusion), and try it on virtually."
|
136 |
)
|
137 |
|
138 |
if __name__ == "__main__":
|