Spaces:
Running
Running
Upload improved_viton.py
Browse files- improved_viton.py +946 -0
improved_viton.py
ADDED
@@ -0,0 +1,946 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.utils.data import Dataset, DataLoader
|
8 |
+
from PIL import Image
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from torchvision.utils import make_grid
|
12 |
+
from torch.optim.lr_scheduler import StepLR
|
13 |
+
import random
|
14 |
+
import cv2
|
15 |
+
|
16 |
+
# Ensure reproducibility
|
17 |
+
def set_seed(seed=42):
|
18 |
+
random.seed(seed)
|
19 |
+
np.random.seed(seed)
|
20 |
+
torch.manual_seed(seed)
|
21 |
+
torch.cuda.manual_seed_all(seed)
|
22 |
+
torch.backends.cudnn.deterministic = True
|
23 |
+
torch.backends.cudnn.benchmark = False
|
24 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
25 |
+
|
26 |
+
|
27 |
+
# Improved dataset handling with proper data augmentation
|
28 |
+
class VITONDataset(Dataset):
|
29 |
+
def __init__(self, root_dir, mode='train', transform=None, augment=False):
|
30 |
+
"""
|
31 |
+
Enhanced dataset class with better error handling and data augmentation
|
32 |
+
|
33 |
+
Args:
|
34 |
+
root_dir: Root directory of the dataset
|
35 |
+
mode: 'train' or 'test'
|
36 |
+
transform: Transforms to apply to images
|
37 |
+
augment: Whether to apply data augmentation
|
38 |
+
"""
|
39 |
+
self.root_dir = root_dir
|
40 |
+
self.mode = mode
|
41 |
+
self.transform = transform
|
42 |
+
self.augment = augment
|
43 |
+
|
44 |
+
# Check if directories exist
|
45 |
+
img_dir = os.path.join(root_dir, f'{mode}_img')
|
46 |
+
cloth_dir = os.path.join(root_dir, f'{mode}_color')
|
47 |
+
label_dir = os.path.join(root_dir, f'{mode}_label')
|
48 |
+
|
49 |
+
if not os.path.exists(img_dir) or not os.path.exists(cloth_dir) or not os.path.exists(label_dir):
|
50 |
+
raise FileNotFoundError(f"One or more dataset directories not found in {root_dir}")
|
51 |
+
|
52 |
+
# Get all image names
|
53 |
+
self.image_names = []
|
54 |
+
for f in sorted(os.listdir(img_dir)):
|
55 |
+
if f.endswith('.jpg'):
|
56 |
+
# Make sure corresponding files exist
|
57 |
+
base_name = f.replace('_0.jpg', '')
|
58 |
+
cloth_path = os.path.join(cloth_dir, f"{base_name}_1.jpg")
|
59 |
+
label_path = os.path.join(label_dir, f"{base_name}_0.png")
|
60 |
+
|
61 |
+
if os.path.exists(cloth_path) and os.path.exists(label_path):
|
62 |
+
self.image_names.append(base_name)
|
63 |
+
|
64 |
+
print(f"Found {len(self.image_names)} valid samples in {mode} set")
|
65 |
+
|
66 |
+
def __len__(self):
|
67 |
+
return len(self.image_names)
|
68 |
+
|
69 |
+
def _apply_augmentation(self, img, cloth, label):
|
70 |
+
"""Apply data augmentation"""
|
71 |
+
# Random horizontal flip
|
72 |
+
if random.random() > 0.5:
|
73 |
+
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
74 |
+
cloth = cloth.transpose(Image.FLIP_LEFT_RIGHT)
|
75 |
+
label = label.transpose(Image.FLIP_LEFT_RIGHT)
|
76 |
+
|
77 |
+
# Random brightness and contrast adjustment for person image
|
78 |
+
if random.random() > 0.7:
|
79 |
+
img = transforms.functional.adjust_brightness(img, random.uniform(0.8, 1.2))
|
80 |
+
img = transforms.functional.adjust_contrast(img, random.uniform(0.8, 1.2))
|
81 |
+
|
82 |
+
# Random color jitter for clothing
|
83 |
+
if random.random() > 0.7:
|
84 |
+
cloth = transforms.functional.adjust_brightness(cloth, random.uniform(0.8, 1.2))
|
85 |
+
cloth = transforms.functional.adjust_saturation(cloth, random.uniform(0.8, 1.2))
|
86 |
+
|
87 |
+
return img, cloth, label
|
88 |
+
|
89 |
+
def __getitem__(self, idx):
|
90 |
+
base_name = self.image_names[idx]
|
91 |
+
|
92 |
+
# Build file paths
|
93 |
+
img_path = os.path.join(self.root_dir, f'{self.mode}_img', f"{base_name}_0.jpg")
|
94 |
+
cloth_path = os.path.join(self.root_dir, f'{self.mode}_color', f"{base_name}_1.jpg")
|
95 |
+
label_path = os.path.join(self.root_dir, f'{self.mode}_label', f"{base_name}_0.png")
|
96 |
+
|
97 |
+
try:
|
98 |
+
# Load images
|
99 |
+
img = Image.open(img_path).convert('RGB').resize((192, 256))
|
100 |
+
cloth = Image.open(cloth_path).convert('RGB').resize((192, 256))
|
101 |
+
label = Image.open(label_path).convert('L').resize((192, 256), resample=Image.NEAREST)
|
102 |
+
|
103 |
+
# Apply augmentation if enabled
|
104 |
+
if self.augment and self.mode == 'train':
|
105 |
+
img, cloth, label = self._apply_augmentation(img, cloth, label)
|
106 |
+
|
107 |
+
# Convert label to numpy for processing
|
108 |
+
img_np = np.array(img)
|
109 |
+
label_np = np.array(label)
|
110 |
+
|
111 |
+
# Create agnostic person image (remove upclothes → label 4)
|
112 |
+
agnostic_np = img_np.copy()
|
113 |
+
agnostic_np[label_np == 4] = [128, 128, 128] # Grey out clothing region
|
114 |
+
|
115 |
+
# Create cloth mask (binary mask of clothing)
|
116 |
+
cloth_mask = (label_np == 4).astype(np.uint8) * 255
|
117 |
+
cloth_mask_img = Image.fromarray(cloth_mask)
|
118 |
+
|
119 |
+
# Apply transforms
|
120 |
+
to_tensor = self.transform if self.transform else transforms.ToTensor()
|
121 |
+
|
122 |
+
person_tensor = to_tensor(img)
|
123 |
+
agnostic_tensor = to_tensor(Image.fromarray(agnostic_np))
|
124 |
+
cloth_tensor = to_tensor(cloth)
|
125 |
+
|
126 |
+
# Fix: Handle cloth mask properly
|
127 |
+
if self.transform:
|
128 |
+
# Convert to RGB for consistent channel handling
|
129 |
+
cloth_mask_rgb = Image.fromarray(cloth_mask).convert('RGB')
|
130 |
+
cloth_mask_tensor = to_tensor(cloth_mask_rgb)
|
131 |
+
else:
|
132 |
+
# Simple ToTensor() normalization for grayscale image
|
133 |
+
cloth_mask_tensor = transforms.ToTensor()(cloth_mask_img)
|
134 |
+
|
135 |
+
# If needed, expand to 3 channels
|
136 |
+
if cloth_tensor.shape[0] == 3:
|
137 |
+
cloth_mask_tensor = cloth_mask_tensor.expand(3, -1, -1)
|
138 |
+
|
139 |
+
# One-hot encode the segmentation mask
|
140 |
+
label_tensor = torch.from_numpy(label_np).long()
|
141 |
+
|
142 |
+
sample = {
|
143 |
+
'person': person_tensor,
|
144 |
+
'agnostic': agnostic_tensor,
|
145 |
+
'cloth': cloth_tensor,
|
146 |
+
'cloth_mask': cloth_mask_tensor,
|
147 |
+
'label': label_tensor,
|
148 |
+
'name': base_name
|
149 |
+
}
|
150 |
+
|
151 |
+
return sample
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
print(f"Error loading sample {base_name}: {e}")
|
155 |
+
# Return a valid sample as fallback - get a different index
|
156 |
+
return self.__getitem__((idx + 1) % len(self.image_names))
|
157 |
+
# class VITONDataset(Dataset):
|
158 |
+
# def __init__(self, root_dir, mode='train', transform=None, augment=False):
|
159 |
+
# """
|
160 |
+
# Enhanced dataset class with better error handling and data augmentation
|
161 |
+
|
162 |
+
# Args:
|
163 |
+
# root_dir: Root directory of the dataset
|
164 |
+
# mode: 'train' or 'test'
|
165 |
+
# transform: Transforms to apply to images
|
166 |
+
# augment: Whether to apply data augmentation
|
167 |
+
# """
|
168 |
+
# self.root_dir = root_dir
|
169 |
+
# self.mode = mode
|
170 |
+
# self.transform = transform
|
171 |
+
# self.augment = augment
|
172 |
+
|
173 |
+
# # Check if directories exist
|
174 |
+
# img_dir = os.path.join(root_dir, f'{mode}_img')
|
175 |
+
# cloth_dir = os.path.join(root_dir, f'{mode}_color')
|
176 |
+
# label_dir = os.path.join(root_dir, f'{mode}_label')
|
177 |
+
|
178 |
+
# if not os.path.exists(img_dir) or not os.path.exists(cloth_dir) or not os.path.exists(label_dir):
|
179 |
+
# raise FileNotFoundError(f"One or more dataset directories not found in {root_dir}")
|
180 |
+
|
181 |
+
# # Get all image names
|
182 |
+
# self.image_names = []
|
183 |
+
# for f in sorted(os.listdir(img_dir)):
|
184 |
+
# if f.endswith('.jpg'):
|
185 |
+
# # Make sure corresponding files exist
|
186 |
+
# base_name = f.replace('_0.jpg', '')
|
187 |
+
# cloth_path = os.path.join(cloth_dir, f"{base_name}_1.jpg")
|
188 |
+
# label_path = os.path.join(label_dir, f"{base_name}_0.png")
|
189 |
+
|
190 |
+
# if os.path.exists(cloth_path) and os.path.exists(label_path):
|
191 |
+
# self.image_names.append(base_name)
|
192 |
+
|
193 |
+
# print(f"Found {len(self.image_names)} valid samples in {mode} set")
|
194 |
+
|
195 |
+
# def __len__(self):
|
196 |
+
# return len(self.image_names)
|
197 |
+
|
198 |
+
# def _apply_augmentation(self, img, cloth, label):
|
199 |
+
# """Apply data augmentation"""
|
200 |
+
# # Random horizontal flip
|
201 |
+
# if random.random() > 0.5:
|
202 |
+
# img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
203 |
+
# cloth = cloth.transpose(Image.FLIP_LEFT_RIGHT)
|
204 |
+
# label = label.transpose(Image.FLIP_LEFT_RIGHT)
|
205 |
+
|
206 |
+
# # Random brightness and contrast adjustment for person image
|
207 |
+
# if random.random() > 0.7:
|
208 |
+
# img = transforms.functional.adjust_brightness(img, random.uniform(0.8, 1.2))
|
209 |
+
# img = transforms.functional.adjust_contrast(img, random.uniform(0.8, 1.2))
|
210 |
+
|
211 |
+
# # Random color jitter for clothing
|
212 |
+
# if random.random() > 0.7:
|
213 |
+
# cloth = transforms.functional.adjust_brightness(cloth, random.uniform(0.8, 1.2))
|
214 |
+
# cloth = transforms.functional.adjust_saturation(cloth, random.uniform(0.8, 1.2))
|
215 |
+
|
216 |
+
# return img, cloth, label
|
217 |
+
|
218 |
+
# def __getitem__(self, idx):
|
219 |
+
# base_name = self.image_names[idx]
|
220 |
+
|
221 |
+
# # Build file paths
|
222 |
+
# img_path = os.path.join(self.root_dir, f'{self.mode}_img', f"{base_name}_0.jpg")
|
223 |
+
# cloth_path = os.path.join(self.root_dir, f'{self.mode}_color', f"{base_name}_1.jpg")
|
224 |
+
# label_path = os.path.join(self.root_dir, f'{self.mode}_label', f"{base_name}_0.png")
|
225 |
+
|
226 |
+
# try:
|
227 |
+
# # Load images
|
228 |
+
# img = Image.open(img_path).convert('RGB').resize((192, 256))
|
229 |
+
# cloth = Image.open(cloth_path).convert('RGB').resize((192, 256))
|
230 |
+
# label = Image.open(label_path).convert('L').resize((192, 256), resample=Image.NEAREST)
|
231 |
+
|
232 |
+
# # Apply augmentation if enabled
|
233 |
+
# if self.augment and self.mode == 'train':
|
234 |
+
# img, cloth, label = self._apply_augmentation(img, cloth, label)
|
235 |
+
|
236 |
+
# # Convert label to numpy for processing
|
237 |
+
# img_np = np.array(img)
|
238 |
+
# label_np = np.array(label)
|
239 |
+
|
240 |
+
# # Create agnostic person image (remove upclothes → label 4)
|
241 |
+
# agnostic_np = img_np.copy()
|
242 |
+
# agnostic_np[label_np == 4] = [128, 128, 128] # Grey out clothing region
|
243 |
+
|
244 |
+
# # Create cloth mask (binary mask of clothing)
|
245 |
+
# cloth_mask = (label_np == 4).astype(np.uint8) * 255
|
246 |
+
# cloth_mask_img = Image.fromarray(cloth_mask)
|
247 |
+
|
248 |
+
# # Apply transforms
|
249 |
+
# to_tensor = self.transform if self.transform else transforms.ToTensor()
|
250 |
+
|
251 |
+
# person_tensor = to_tensor(img)
|
252 |
+
# agnostic_tensor = to_tensor(Image.fromarray(agnostic_np))
|
253 |
+
# cloth_tensor = to_tensor(cloth)
|
254 |
+
|
255 |
+
# # Fix: Ensure the cloth mask is properly processed to match expected dimensions
|
256 |
+
# # First convert to Pillow Image with mode 'L' (grayscale)
|
257 |
+
# cloth_mask_pil = Image.fromarray(cloth_mask, mode='L')
|
258 |
+
|
259 |
+
# # Then apply the transform (which should normalize to [-1, 1] range)
|
260 |
+
# if self.transform:
|
261 |
+
# # For custom transform that expects RGB input, convert grayscale to RGB
|
262 |
+
# cloth_mask_rgb = cloth_mask_pil.convert('RGB')
|
263 |
+
# cloth_mask_tensor = self.transform(cloth_mask_rgb)
|
264 |
+
# else:
|
265 |
+
# # If using basic ToTensor, keep as grayscale but repeat to 3 channels if needed
|
266 |
+
# cloth_mask_tensor = transforms.ToTensor()(cloth_mask_pil)
|
267 |
+
|
268 |
+
# # If model expects 3 channels, repeat the single channel
|
269 |
+
# if cloth_tensor.shape[0] == 3: # If cloth is RGB (3 channels)
|
270 |
+
# cloth_mask_tensor = cloth_mask_tensor.repeat(3, 1, 1)
|
271 |
+
|
272 |
+
# # One-hot encode the segmentation mask
|
273 |
+
# label_tensor = torch.from_numpy(label_np).long()
|
274 |
+
|
275 |
+
# sample = {
|
276 |
+
# 'person': person_tensor,
|
277 |
+
# 'agnostic': agnostic_tensor,
|
278 |
+
# 'cloth': cloth_tensor,
|
279 |
+
# 'cloth_mask': cloth_mask_tensor,
|
280 |
+
# 'label': label_tensor,
|
281 |
+
# 'name': base_name
|
282 |
+
# }
|
283 |
+
|
284 |
+
# return sample
|
285 |
+
|
286 |
+
# except Exception as e:
|
287 |
+
# print(f"Error loading sample {base_name}: {e}")
|
288 |
+
# # Return a valid sample as fallback - get a different index
|
289 |
+
# return self.__getitem__((idx + 1) % len(self.image_names))
|
290 |
+
|
291 |
+
|
292 |
+
# Improved U-Net with residual connections and attention
|
293 |
+
class AttentionBlock(nn.Module):
|
294 |
+
def __init__(self, F_g, F_l, F_int):
|
295 |
+
super(AttentionBlock, self).__init__()
|
296 |
+
self.W_g = nn.Sequential(
|
297 |
+
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0),
|
298 |
+
nn.BatchNorm2d(F_int)
|
299 |
+
)
|
300 |
+
|
301 |
+
self.W_x = nn.Sequential(
|
302 |
+
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0),
|
303 |
+
nn.BatchNorm2d(F_int)
|
304 |
+
)
|
305 |
+
|
306 |
+
self.psi = nn.Sequential(
|
307 |
+
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0),
|
308 |
+
nn.BatchNorm2d(1),
|
309 |
+
nn.Sigmoid()
|
310 |
+
)
|
311 |
+
|
312 |
+
# Fixed: Change inplace ReLU to non-inplace
|
313 |
+
self.relu = nn.ReLU(inplace=False)
|
314 |
+
|
315 |
+
def forward(self, g, x):
|
316 |
+
g1 = self.W_g(g)
|
317 |
+
x1 = self.W_x(x)
|
318 |
+
psi = self.relu(g1 + x1)
|
319 |
+
psi = self.psi(psi)
|
320 |
+
|
321 |
+
return x * psi
|
322 |
+
|
323 |
+
|
324 |
+
class ResidualBlock(nn.Module):
|
325 |
+
def __init__(self, in_channels):
|
326 |
+
super(ResidualBlock, self).__init__()
|
327 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
|
328 |
+
self.bn1 = nn.BatchNorm2d(in_channels)
|
329 |
+
self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
|
330 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
331 |
+
# Fixed: Change inplace ReLU to non-inplace
|
332 |
+
self.relu = nn.ReLU(inplace=False)
|
333 |
+
|
334 |
+
def forward(self, x):
|
335 |
+
residual = x
|
336 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
337 |
+
out = self.bn2(self.conv2(out))
|
338 |
+
out += residual
|
339 |
+
out = self.relu(out)
|
340 |
+
return out
|
341 |
+
|
342 |
+
class PatchDiscriminator(nn.Module):
|
343 |
+
def __init__(self, in_channels=6):
|
344 |
+
super(PatchDiscriminator, self).__init__()
|
345 |
+
|
346 |
+
def discriminator_block(in_filters, out_filters, normalization=True):
|
347 |
+
layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)]
|
348 |
+
if normalization:
|
349 |
+
layers.append(nn.BatchNorm2d(out_filters))
|
350 |
+
layers.append(nn.LeakyReLU(0.2, inplace=False)) # Fixed: inplace=False
|
351 |
+
return layers
|
352 |
+
|
353 |
+
self.model = nn.Sequential(
|
354 |
+
*discriminator_block(in_channels, 64, normalization=False),
|
355 |
+
*discriminator_block(64, 128),
|
356 |
+
*discriminator_block(128, 256),
|
357 |
+
*discriminator_block(256, 512),
|
358 |
+
nn.ZeroPad2d((1, 0, 1, 0)),
|
359 |
+
nn.Conv2d(512, 1, 4, padding=1, bias=False)
|
360 |
+
)
|
361 |
+
|
362 |
+
def forward(self, img_A, img_B):
|
363 |
+
# Concatenate image and condition
|
364 |
+
img_input = torch.cat((img_A, img_B), 1)
|
365 |
+
return self.model(img_input)
|
366 |
+
|
367 |
+
class ImprovedUNetGenerator(nn.Module):
|
368 |
+
def __init__(self, in_channels=6, out_channels=3):
|
369 |
+
super(ImprovedUNetGenerator, self).__init__()
|
370 |
+
|
371 |
+
# Encoder
|
372 |
+
self.enc1 = nn.Sequential(
|
373 |
+
nn.Conv2d(in_channels, 64, 4, 2, 1),
|
374 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
375 |
+
)
|
376 |
+
self.enc2 = nn.Sequential(
|
377 |
+
nn.Conv2d(64, 128, 4, 2, 1),
|
378 |
+
nn.BatchNorm2d(128),
|
379 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
380 |
+
)
|
381 |
+
self.enc3 = nn.Sequential(
|
382 |
+
nn.Conv2d(128, 256, 4, 2, 1),
|
383 |
+
nn.BatchNorm2d(256),
|
384 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
385 |
+
)
|
386 |
+
self.enc4 = nn.Sequential(
|
387 |
+
nn.Conv2d(256, 512, 4, 2, 1),
|
388 |
+
nn.BatchNorm2d(512),
|
389 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
390 |
+
)
|
391 |
+
self.enc5 = nn.Sequential(
|
392 |
+
nn.Conv2d(512, 512, 4, 2, 1),
|
393 |
+
nn.BatchNorm2d(512),
|
394 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
395 |
+
)
|
396 |
+
|
397 |
+
# Bottleneck
|
398 |
+
self.bottleneck = ResidualBlock(512)
|
399 |
+
|
400 |
+
# Decoder
|
401 |
+
self.dec5 = nn.Sequential(
|
402 |
+
nn.ConvTranspose2d(512, 512, 4, 2, 1),
|
403 |
+
nn.BatchNorm2d(512),
|
404 |
+
nn.ReLU(inplace=False), # Fixed: inplace=False
|
405 |
+
nn.Dropout(0.5)
|
406 |
+
)
|
407 |
+
self.dec4 = nn.Sequential(
|
408 |
+
nn.ConvTranspose2d(1024, 256, 4, 2, 1),
|
409 |
+
nn.BatchNorm2d(256),
|
410 |
+
nn.ReLU(inplace=False), # Fixed: inplace=False
|
411 |
+
nn.Dropout(0.5)
|
412 |
+
)
|
413 |
+
self.dec3 = nn.Sequential(
|
414 |
+
nn.ConvTranspose2d(512, 128, 4, 2, 1),
|
415 |
+
nn.BatchNorm2d(128),
|
416 |
+
nn.ReLU(inplace=False) # Fixed: inplace=False
|
417 |
+
)
|
418 |
+
self.dec2 = nn.Sequential(
|
419 |
+
nn.ConvTranspose2d(256, 64, 4, 2, 1),
|
420 |
+
nn.BatchNorm2d(64),
|
421 |
+
nn.ReLU(inplace=False) # Fixed: inplace=False
|
422 |
+
)
|
423 |
+
self.dec1 = nn.Sequential(
|
424 |
+
nn.ConvTranspose2d(128, out_channels, 4, 2, 1),
|
425 |
+
nn.Tanh()
|
426 |
+
)
|
427 |
+
|
428 |
+
# Attention gates
|
429 |
+
self.att4 = AttentionBlock(F_g=512, F_l=512, F_int=256)
|
430 |
+
self.att3 = AttentionBlock(F_g=256, F_l=256, F_int=128)
|
431 |
+
self.att2 = AttentionBlock(F_g=128, F_l=128, F_int=64)
|
432 |
+
self.att1 = AttentionBlock(F_g=64, F_l=64, F_int=32)
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
# Encoder
|
436 |
+
e1 = self.enc1(x)
|
437 |
+
e2 = self.enc2(e1)
|
438 |
+
e3 = self.enc3(e2)
|
439 |
+
e4 = self.enc4(e3)
|
440 |
+
e5 = self.enc5(e4)
|
441 |
+
|
442 |
+
# Bottleneck
|
443 |
+
b = self.bottleneck(e5)
|
444 |
+
|
445 |
+
# Decoder with attention and skip connections
|
446 |
+
d5 = self.dec5(b)
|
447 |
+
d5 = torch.cat([self.att4(d5, e4), d5], dim=1)
|
448 |
+
|
449 |
+
d4 = self.dec4(d5)
|
450 |
+
d4 = torch.cat([self.att3(d4, e3), d4], dim=1)
|
451 |
+
|
452 |
+
d3 = self.dec3(d4)
|
453 |
+
d3 = torch.cat([self.att2(d3, e2), d3], dim=1)
|
454 |
+
|
455 |
+
d2 = self.dec2(d3)
|
456 |
+
d2 = torch.cat([self.att1(d2, e1), d2], dim=1)
|
457 |
+
|
458 |
+
d1 = self.dec1(d2)
|
459 |
+
|
460 |
+
return d1
|
461 |
+
|
462 |
+
|
463 |
+
# Discriminator network for adversarial training
|
464 |
+
class ImprovedUNetGenerator(nn.Module):
|
465 |
+
def __init__(self, in_channels=6, out_channels=3):
|
466 |
+
super(ImprovedUNetGenerator, self).__init__()
|
467 |
+
|
468 |
+
# Encoder
|
469 |
+
self.enc1 = nn.Sequential(
|
470 |
+
nn.Conv2d(in_channels, 64, 4, 2, 1),
|
471 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
472 |
+
)
|
473 |
+
self.enc2 = nn.Sequential(
|
474 |
+
nn.Conv2d(64, 128, 4, 2, 1),
|
475 |
+
nn.BatchNorm2d(128),
|
476 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
477 |
+
)
|
478 |
+
self.enc3 = nn.Sequential(
|
479 |
+
nn.Conv2d(128, 256, 4, 2, 1),
|
480 |
+
nn.BatchNorm2d(256),
|
481 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
482 |
+
)
|
483 |
+
self.enc4 = nn.Sequential(
|
484 |
+
nn.Conv2d(256, 512, 4, 2, 1),
|
485 |
+
nn.BatchNorm2d(512),
|
486 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
487 |
+
)
|
488 |
+
self.enc5 = nn.Sequential(
|
489 |
+
nn.Conv2d(512, 512, 4, 2, 1),
|
490 |
+
nn.BatchNorm2d(512),
|
491 |
+
nn.LeakyReLU(0.2, inplace=False) # Fixed: inplace=False
|
492 |
+
)
|
493 |
+
|
494 |
+
# Bottleneck
|
495 |
+
self.bottleneck = ResidualBlock(512)
|
496 |
+
|
497 |
+
# Decoder
|
498 |
+
self.dec5 = nn.Sequential(
|
499 |
+
nn.ConvTranspose2d(512, 512, 4, 2, 1),
|
500 |
+
nn.BatchNorm2d(512),
|
501 |
+
nn.ReLU(inplace=False), # Fixed: inplace=False
|
502 |
+
nn.Dropout(0.5)
|
503 |
+
)
|
504 |
+
self.dec4 = nn.Sequential(
|
505 |
+
nn.ConvTranspose2d(1024, 256, 4, 2, 1),
|
506 |
+
nn.BatchNorm2d(256),
|
507 |
+
nn.ReLU(inplace=False), # Fixed: inplace=False
|
508 |
+
nn.Dropout(0.5)
|
509 |
+
)
|
510 |
+
self.dec3 = nn.Sequential(
|
511 |
+
nn.ConvTranspose2d(512, 128, 4, 2, 1),
|
512 |
+
nn.BatchNorm2d(128),
|
513 |
+
nn.ReLU(inplace=False) # Fixed: inplace=False
|
514 |
+
)
|
515 |
+
self.dec2 = nn.Sequential(
|
516 |
+
nn.ConvTranspose2d(256, 64, 4, 2, 1),
|
517 |
+
nn.BatchNorm2d(64),
|
518 |
+
nn.ReLU(inplace=False) # Fixed: inplace=False
|
519 |
+
)
|
520 |
+
self.dec1 = nn.Sequential(
|
521 |
+
nn.ConvTranspose2d(128, out_channels, 4, 2, 1),
|
522 |
+
nn.Tanh()
|
523 |
+
)
|
524 |
+
|
525 |
+
# Attention gates
|
526 |
+
self.att4 = AttentionBlock(F_g=512, F_l=512, F_int=256)
|
527 |
+
self.att3 = AttentionBlock(F_g=256, F_l=256, F_int=128)
|
528 |
+
self.att2 = AttentionBlock(F_g=128, F_l=128, F_int=64)
|
529 |
+
self.att1 = AttentionBlock(F_g=64, F_l=64, F_int=32)
|
530 |
+
|
531 |
+
def forward(self, x):
|
532 |
+
# Encoder
|
533 |
+
e1 = self.enc1(x)
|
534 |
+
e2 = self.enc2(e1)
|
535 |
+
e3 = self.enc3(e2)
|
536 |
+
e4 = self.enc4(e3)
|
537 |
+
e5 = self.enc5(e4)
|
538 |
+
|
539 |
+
# Bottleneck
|
540 |
+
b = self.bottleneck(e5)
|
541 |
+
|
542 |
+
# Decoder with attention and skip connections
|
543 |
+
d5 = self.dec5(b)
|
544 |
+
d5 = torch.cat([self.att4(d5, e4), d5], dim=1)
|
545 |
+
|
546 |
+
d4 = self.dec4(d5)
|
547 |
+
d4 = torch.cat([self.att3(d4, e3), d4], dim=1)
|
548 |
+
|
549 |
+
d3 = self.dec3(d4)
|
550 |
+
d3 = torch.cat([self.att2(d3, e2), d3], dim=1)
|
551 |
+
|
552 |
+
d2 = self.dec2(d3)
|
553 |
+
d2 = torch.cat([self.att1(d2, e1), d2], dim=1)
|
554 |
+
|
555 |
+
d1 = self.dec1(d2)
|
556 |
+
|
557 |
+
return d1
|
558 |
+
|
559 |
+
|
560 |
+
# Custom loss functions
|
561 |
+
class VGGPerceptualLoss(nn.Module):
|
562 |
+
def __init__(self):
|
563 |
+
super(VGGPerceptualLoss, self).__init__()
|
564 |
+
# Import vgg here to avoid dependency at module level
|
565 |
+
import torchvision.models as models
|
566 |
+
|
567 |
+
# Load pretrained VGG but make sure to use non-inplace operations
|
568 |
+
vgg = models.vgg19(pretrained=True).features.eval()
|
569 |
+
|
570 |
+
# Replace inplace ReLU with non-inplace version
|
571 |
+
for idx, module in enumerate(vgg):
|
572 |
+
if isinstance(module, nn.ReLU):
|
573 |
+
vgg[idx] = nn.ReLU(inplace=False)
|
574 |
+
|
575 |
+
self.model = nn.Sequential()
|
576 |
+
|
577 |
+
# Using feature layers
|
578 |
+
feature_layers = [0, 2, 5, 10, 15, 20]
|
579 |
+
self.layer_weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
|
580 |
+
|
581 |
+
for i in range(len(feature_layers)):
|
582 |
+
self.model.add_module(f'layer_{i}', vgg[feature_layers[i]])
|
583 |
+
|
584 |
+
for param in self.model.parameters():
|
585 |
+
param.requires_grad = False
|
586 |
+
|
587 |
+
self.criterion = nn.L1Loss()
|
588 |
+
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
589 |
+
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
590 |
+
|
591 |
+
def forward(self, x, y):
|
592 |
+
x = (x - self.mean) / self.std
|
593 |
+
y = (y - self.mean) / self.std
|
594 |
+
|
595 |
+
loss = 0.0
|
596 |
+
x_features = x
|
597 |
+
y_features = y
|
598 |
+
|
599 |
+
for i, layer in enumerate(self.model):
|
600 |
+
x_features = layer(x_features)
|
601 |
+
y_features = layer(y_features)
|
602 |
+
|
603 |
+
if i in [0, 1, 2, 3, 4]: # Only compute loss at specified layers
|
604 |
+
loss += self.layer_weights[i] * self.criterion(x_features, y_features)
|
605 |
+
|
606 |
+
return loss
|
607 |
+
|
608 |
+
|
609 |
+
# Training setup
|
610 |
+
def train_model(model_G, model_D=None, train_loader=None, val_loader=None,
|
611 |
+
num_epochs=50, device=None, use_gan=True):
|
612 |
+
"""
|
613 |
+
Improved training function with GAN training, learning rate scheduler, and validation
|
614 |
+
"""
|
615 |
+
torch.autograd.set_detect_anomaly(True)
|
616 |
+
if device is None:
|
617 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
618 |
+
|
619 |
+
# Optimizers
|
620 |
+
optimizer_G = torch.optim.Adam(model_G.parameters(), lr=2e-4, betas=(0.5, 0.999))
|
621 |
+
scheduler_G = StepLR(optimizer_G, step_size=10, gamma=0.5)
|
622 |
+
|
623 |
+
# Losses
|
624 |
+
criterion_L1 = nn.L1Loss()
|
625 |
+
criterion_perceptual = VGGPerceptualLoss().to(device)
|
626 |
+
|
627 |
+
# GAN setup
|
628 |
+
if use_gan and model_D is not None:
|
629 |
+
optimizer_D = torch.optim.Adam(model_D.parameters(), lr=2e-4, betas=(0.5, 0.999))
|
630 |
+
scheduler_D = StepLR(optimizer_D, step_size=10, gamma=0.5)
|
631 |
+
criterion_GAN = nn.MSELoss()
|
632 |
+
|
633 |
+
# Lists to store losses for plotting
|
634 |
+
train_losses_G = []
|
635 |
+
train_losses_D = [] if use_gan else None
|
636 |
+
val_losses = []
|
637 |
+
|
638 |
+
# Training loop
|
639 |
+
for epoch in range(num_epochs):
|
640 |
+
model_G.train()
|
641 |
+
if use_gan and model_D is not None:
|
642 |
+
model_D.train()
|
643 |
+
|
644 |
+
epoch_loss_G = 0.0
|
645 |
+
epoch_loss_D = 0.0 if use_gan else None
|
646 |
+
start_time = time.time()
|
647 |
+
|
648 |
+
for i, sample in enumerate(train_loader):
|
649 |
+
agnostic = sample['agnostic'].to(device)
|
650 |
+
cloth = sample['cloth'].to(device)
|
651 |
+
target = sample['person'].to(device)
|
652 |
+
cloth_mask = sample['cloth_mask'].to(device)
|
653 |
+
|
654 |
+
# Combine inputs
|
655 |
+
input_tensor = torch.cat([agnostic, cloth], dim=1)
|
656 |
+
|
657 |
+
# -----------------
|
658 |
+
# Generator training
|
659 |
+
# -----------------
|
660 |
+
optimizer_G.zero_grad()
|
661 |
+
|
662 |
+
# Generate fake image
|
663 |
+
fake_image = model_G(input_tensor)
|
664 |
+
|
665 |
+
# Calculate L1 loss
|
666 |
+
loss_L1 = criterion_L1(fake_image, target)
|
667 |
+
|
668 |
+
# Calculate perceptual loss
|
669 |
+
loss_perceptual = criterion_perceptual(fake_image, target)
|
670 |
+
|
671 |
+
# Calculate total generator loss
|
672 |
+
loss_G = loss_L1 + 0.1 * loss_perceptual
|
673 |
+
|
674 |
+
# Add GAN loss if using adversarial training
|
675 |
+
if use_gan and model_D is not None:
|
676 |
+
# Adversarial loss (trick for stability: use 1s instead of 0.9)
|
677 |
+
pred_fake = model_D(fake_image, cloth)
|
678 |
+
target_real = torch.ones_like(pred_fake).to(device)
|
679 |
+
loss_GAN = criterion_GAN(pred_fake, target_real)
|
680 |
+
|
681 |
+
# Total generator loss with GAN component
|
682 |
+
loss_G += 0.1 * loss_GAN
|
683 |
+
|
684 |
+
# Backward pass and optimize generator
|
685 |
+
loss_G.backward()
|
686 |
+
optimizer_G.step()
|
687 |
+
|
688 |
+
epoch_loss_G += loss_G.item()
|
689 |
+
|
690 |
+
# -----------------
|
691 |
+
# Discriminator training (if using GAN)
|
692 |
+
# -----------------
|
693 |
+
if use_gan and model_D is not None:
|
694 |
+
optimizer_D.zero_grad()
|
695 |
+
|
696 |
+
# Real loss
|
697 |
+
pred_real = model_D(target, cloth)
|
698 |
+
target_real = torch.ones_like(pred_real).to(device)
|
699 |
+
loss_real = criterion_GAN(pred_real, target_real)
|
700 |
+
|
701 |
+
# Fake loss
|
702 |
+
pred_fake = model_D(fake_image.detach(), cloth)
|
703 |
+
target_fake = torch.zeros_like(pred_fake).to(device)
|
704 |
+
loss_fake = criterion_GAN(pred_fake, target_fake)
|
705 |
+
|
706 |
+
# Total discriminator loss
|
707 |
+
loss_D = (loss_real + loss_fake) / 2
|
708 |
+
|
709 |
+
# Backward pass and optimize discriminator
|
710 |
+
loss_D.backward()
|
711 |
+
optimizer_D.step()
|
712 |
+
|
713 |
+
epoch_loss_D += loss_D.item()
|
714 |
+
|
715 |
+
# Print progress
|
716 |
+
if (i+1) % 50 == 0:
|
717 |
+
time_elapsed = time.time() - start_time
|
718 |
+
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], "
|
719 |
+
f"G Loss: {loss_G.item():.4f}, "
|
720 |
+
f"{'D Loss: ' + f'{loss_D.item():.4f}, ' if use_gan else ''}"
|
721 |
+
f"Time: {time_elapsed:.2f}s")
|
722 |
+
|
723 |
+
# Update learning rates
|
724 |
+
scheduler_G.step()
|
725 |
+
if use_gan and model_D is not None:
|
726 |
+
scheduler_D.step()
|
727 |
+
|
728 |
+
# Calculate average losses for this epoch
|
729 |
+
avg_loss_G = epoch_loss_G / len(train_loader)
|
730 |
+
train_losses_G.append(avg_loss_G)
|
731 |
+
|
732 |
+
if use_gan:
|
733 |
+
avg_loss_D = epoch_loss_D / len(train_loader)
|
734 |
+
train_losses_D.append(avg_loss_D)
|
735 |
+
|
736 |
+
# Validation
|
737 |
+
if val_loader is not None:
|
738 |
+
val_loss = validate_model(model_G, val_loader, device)
|
739 |
+
val_losses.append(val_loss)
|
740 |
+
|
741 |
+
print(f"Epoch {epoch+1}, Train Loss G: {avg_loss_G:.4f}, "
|
742 |
+
f"{'Train Loss D: ' + f'{avg_loss_D:.4f}, ' if use_gan else ''}"
|
743 |
+
f"Val Loss: {val_loss:.4f}, "
|
744 |
+
f"Time: {time.time()-start_time:.2f}s")
|
745 |
+
else:
|
746 |
+
print(f"Epoch {epoch+1}, Train Loss G: {avg_loss_G:.4f}, "
|
747 |
+
f"{'Train Loss D: ' + f'{avg_loss_D:.4f}, ' if use_gan else ''}"
|
748 |
+
f"Time: {time.time()-start_time:.2f}s")
|
749 |
+
|
750 |
+
# Save model checkpoint periodically
|
751 |
+
if (epoch+1) % 5 == 0:
|
752 |
+
save_checkpoint(model_G, model_D, optimizer_G, optimizer_D if use_gan else None,
|
753 |
+
epoch, f"checkpoint_epoch_{epoch+1}.pth")
|
754 |
+
|
755 |
+
# Visualize some results
|
756 |
+
if (epoch+1) % 5 == 0:
|
757 |
+
visualize_results(model_G, val_loader, device, epoch+1)
|
758 |
+
|
759 |
+
# Plot training losses
|
760 |
+
plot_losses(train_losses_G, train_losses_D, val_losses)
|
761 |
+
|
762 |
+
return model_G, model_D
|
763 |
+
|
764 |
+
|
765 |
+
def validate_model(model, val_loader, device):
|
766 |
+
"""Validate the model on validation set"""
|
767 |
+
model.eval()
|
768 |
+
val_loss = 0.0
|
769 |
+
criterion = nn.L1Loss()
|
770 |
+
|
771 |
+
with torch.no_grad():
|
772 |
+
for sample in val_loader:
|
773 |
+
agnostic = sample['agnostic'].to(device)
|
774 |
+
cloth = sample['cloth'].to(device)
|
775 |
+
target = sample['person'].to(device)
|
776 |
+
|
777 |
+
input_tensor = torch.cat([agnostic, cloth], dim=1)
|
778 |
+
output = model(input_tensor)
|
779 |
+
|
780 |
+
loss = criterion(output, target)
|
781 |
+
val_loss += loss.item()
|
782 |
+
|
783 |
+
return val_loss / len(val_loader)
|
784 |
+
|
785 |
+
|
786 |
+
def visualize_results(model, dataloader, device, epoch):
|
787 |
+
"""Visualize generated try-on results"""
|
788 |
+
model.eval()
|
789 |
+
|
790 |
+
# Get a batch of samples
|
791 |
+
for i, sample in enumerate(dataloader):
|
792 |
+
if i >= 1: # Only visualize first batch
|
793 |
+
break
|
794 |
+
|
795 |
+
with torch.no_grad():
|
796 |
+
agnostic = sample['agnostic'].to(device)
|
797 |
+
cloth = sample['cloth'].to(device)
|
798 |
+
target = sample['person'].to(device)
|
799 |
+
|
800 |
+
input_tensor = torch.cat([agnostic, cloth], dim=1)
|
801 |
+
output = model(input_tensor)
|
802 |
+
|
803 |
+
# Convert tensors for visualization
|
804 |
+
imgs = []
|
805 |
+
for j in range(min(4, output.size(0))): # Show max 4 examples
|
806 |
+
person_img = (target[j].cpu().permute(1, 2, 0).numpy() + 1) / 2
|
807 |
+
agnostic_img = (agnostic[j].cpu().permute(1, 2, 0).numpy() + 1) / 2
|
808 |
+
cloth_img = (cloth[j].cpu().permute(1, 2, 0).numpy() + 1) / 2
|
809 |
+
output_img = (output[j].cpu().permute(1, 2, 0).numpy() + 1) / 2
|
810 |
+
|
811 |
+
# Combine images for visualization
|
812 |
+
row1 = np.hstack([agnostic_img, cloth_img])
|
813 |
+
row2 = np.hstack([output_img, person_img])
|
814 |
+
combined = np.vstack([row1, row2])
|
815 |
+
|
816 |
+
imgs.append(combined)
|
817 |
+
|
818 |
+
# Create figure
|
819 |
+
fig, axs = plt.subplots(1, len(imgs), figsize=(15, 5))
|
820 |
+
if len(imgs) == 1:
|
821 |
+
axs = [axs]
|
822 |
+
|
823 |
+
for j, img in enumerate(imgs):
|
824 |
+
axs[j].imshow(img)
|
825 |
+
axs[j].set_title(f"Sample {j+1}")
|
826 |
+
axs[j].axis('off')
|
827 |
+
|
828 |
+
fig.suptitle(f"Epoch {epoch} Results", fontsize=16)
|
829 |
+
plt.tight_layout()
|
830 |
+
|
831 |
+
# Save figure
|
832 |
+
os.makedirs('results', exist_ok=True)
|
833 |
+
plt.savefig(f'results/epoch_{epoch}_samples.png')
|
834 |
+
plt.close()
|
835 |
+
|
836 |
+
|
837 |
+
def plot_losses(train_losses_G, train_losses_D=None, val_losses=None):
|
838 |
+
"""Plot training and validation losses"""
|
839 |
+
plt.figure(figsize=(10, 5))
|
840 |
+
plt.plot(train_losses_G, label='Generator Loss')
|
841 |
+
|
842 |
+
if train_losses_D:
|
843 |
+
plt.plot(train_losses_D, label='Discriminator Loss')
|
844 |
+
|
845 |
+
if val_losses:
|
846 |
+
plt.plot(val_losses, label='Validation Loss')
|
847 |
+
|
848 |
+
plt.xlabel('Epochs')
|
849 |
+
plt.ylabel('Loss')
|
850 |
+
plt.title('Training and Validation Losses')
|
851 |
+
plt.legend()
|
852 |
+
plt.grid(True)
|
853 |
+
|
854 |
+
os.makedirs('results', exist_ok=True)
|
855 |
+
plt.savefig('results/loss_plot.png')
|
856 |
+
plt.close()
|
857 |
+
|
858 |
+
|
859 |
+
def save_checkpoint(model_G, model_D=None, optimizer_G=None, optimizer_D=None, epoch=None, filename="checkpoint.pth"):
|
860 |
+
"""Save model checkpoint"""
|
861 |
+
os.makedirs('checkpoints', exist_ok=True)
|
862 |
+
|
863 |
+
checkpoint = {
|
864 |
+
'epoch': epoch,
|
865 |
+
'model_G_state_dict': model_G.state_dict(),
|
866 |
+
'optimizer_G_state_dict': optimizer_G.state_dict() if optimizer_G else None,
|
867 |
+
}
|
868 |
+
|
869 |
+
if model_D is not None:
|
870 |
+
checkpoint['model_D_state_dict'] = model_D.state_dict()
|
871 |
+
|
872 |
+
if optimizer_D is not None:
|
873 |
+
checkpoint['optimizer_D_state_dict'] = optimizer_D.state_dict()
|
874 |
+
|
875 |
+
torch.save(checkpoint, f'checkpoints/{filename}')
|
876 |
+
|
877 |
+
|
878 |
+
def load_checkpoint(model_G, model_D=None, optimizer_G=None, optimizer_D=None, filename="checkpoint.pth"):
|
879 |
+
"""Load model checkpoint"""
|
880 |
+
checkpoint = torch.load(f'checkpoints/{filename}')
|
881 |
+
|
882 |
+
model_G.load_state_dict(checkpoint['model_G_state_dict'])
|
883 |
+
|
884 |
+
if optimizer_G and 'optimizer_G_state_dict' in checkpoint:
|
885 |
+
optimizer_G.load_state_dict(checkpoint['optimizer_G_state_dict'])
|
886 |
+
|
887 |
+
if model_D is not None and 'model_D_state_dict' in checkpoint:
|
888 |
+
model_D.load_state_dict(checkpoint['model_D_state_dict'])
|
889 |
+
|
890 |
+
if optimizer_D is not None and 'optimizer_D_state_dict' in checkpoint:
|
891 |
+
optimizer_D.load_state_dict(checkpoint['optimizer_D_state_dict'])
|
892 |
+
|
893 |
+
return checkpoint.get('epoch', 0)
|
894 |
+
|
895 |
+
|
896 |
+
# Test function
|
897 |
+
def test_model(model, test_loader, device, result_dir='test_results'):
|
898 |
+
"""Generate and save test results"""
|
899 |
+
model.eval()
|
900 |
+
os.makedirs(result_dir, exist_ok=True)
|
901 |
+
|
902 |
+
with torch.no_grad():
|
903 |
+
for i, sample in enumerate(test_loader):
|
904 |
+
agnostic = sample['agnostic'].to(device)
|
905 |
+
cloth = sample['cloth'].to(device)
|
906 |
+
target = sample['person'].to(device)
|
907 |
+
name = sample['name'][0] # Get sample name
|
908 |
+
|
909 |
+
# Generate try-on result
|
910 |
+
input_tensor = torch.cat([agnostic, cloth], dim=1)
|
911 |
+
output = model(input_tensor)
|
912 |
+
|
913 |
+
# Save images
|
914 |
+
output_img = (output[0].cpu().permute(1, 2, 0).numpy() + 1) / 2
|
915 |
+
target_img = (target[0].cpu().permute(1, 2, 0).numpy() + 1) / 2
|
916 |
+
agnostic_img = (agnostic[0].cpu().permute(1, 2, 0).numpy() + 1) / 2
|
917 |
+
cloth_img = (cloth[0].cpu().permute(1, 2, 0).numpy() + 1) / 2
|
918 |
+
|
919 |
+
# Save individual images
|
920 |
+
plt.imsave(f'{result_dir}/{name}_output.png', output_img)
|
921 |
+
plt.imsave(f'{result_dir}/{name}_target.png', target_img)
|
922 |
+
|
923 |
+
# Save comparison grid
|
924 |
+
fig, ax = plt.subplots(2, 2, figsize=(12, 12))
|
925 |
+
ax[0, 0].imshow(agnostic_img)
|
926 |
+
ax[0, 0].set_title('Person (w/o clothes)')
|
927 |
+
ax[0, 0].axis('off')
|
928 |
+
|
929 |
+
ax[0, 1].imshow(cloth_img)
|
930 |
+
ax[0, 1].set_title('Clothing Item')
|
931 |
+
ax[0, 1].axis('off')
|
932 |
+
|
933 |
+
ax[1, 0].imshow(output_img)
|
934 |
+
ax[1, 0].set_title('Generated Result')
|
935 |
+
ax[1, 0].axis('off')
|
936 |
+
|
937 |
+
ax[1, 1].imshow(target_img)
|
938 |
+
ax[1, 1].set_title('Ground Truth')
|
939 |
+
ax[1, 1].axis('off')
|
940 |
+
|
941 |
+
plt.tight_layout()
|
942 |
+
plt.savefig(f'{result_dir}/{name}_comparison.png')
|
943 |
+
plt.close()
|
944 |
+
|
945 |
+
if (i+1) % 10 == 0:
|
946 |
+
print(f"Processed {i+1}/{len(test_loader)} test samples")
|