Spaces:
Sleeping
Sleeping
File size: 9,854 Bytes
b99dca9 3e7b4c7 b99dca9 3e7b4c7 b99dca9 3e7b4c7 b99dca9 6706839 b99dca9 6706839 b99dca9 3e7b4c7 b99dca9 6706839 3e7b4c7 6706839 3e7b4c7 31d417a b99dca9 3e7b4c7 6184732 3e7b4c7 6706839 3e7b4c7 6706839 b99dca9 3e7b4c7 b99dca9 6706839 b99dca9 3e7b4c7 6706839 b99dca9 3e7b4c7 6706839 b99dca9 e43c7ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
from PIL import Image
import torch
import torch.nn as nn
import numpy as np
from torchvision import transforms
import cv2
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
from improved_viton import ImprovedUNetGenerator
# ----------------- Device -----------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ----------------- Load Human Parser Model -----------------
processor = AutoImageProcessor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
parser_model = SegformerForSemanticSegmentation.from_pretrained(
"matei-dorian/segformer-b5-finetuned-human-parsing"
).to(device).eval()
# ----------------- UNet Generator Definition -----------------
class UNetGenerator(nn.Module):
def __init__(self, in_channels=6, out_channels=3):
super(UNetGenerator, self).__init__()
def block(in_c, out_c):
return nn.Sequential(
nn.Conv2d(in_c, out_c, 4, 2, 1),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True)
)
def up_block(in_c, out_c):
return nn.Sequential(
nn.ConvTranspose2d(in_c, out_c, 4, 2, 1),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True)
)
self.down1 = block(in_channels, 64)
self.down2 = block(64, 128)
self.down3 = block(128, 256)
self.down4 = block(256, 512)
self.up1 = up_block(512, 256)
self.up2 = up_block(512, 128)
self.up3 = up_block(256, 64)
self.up4 = nn.Sequential(
nn.ConvTranspose2d(128, out_channels, 4, 2, 1),
nn.Tanh()
)
def forward(self, x):
d1 = self.down1(x)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
u1 = self.up1(d4)
u2 = self.up2(torch.cat([u1, d3], dim=1))
u3 = self.up3(torch.cat([u2, d2], dim=1))
u4 = self.up4(torch.cat([u3, d1], dim=1))
return u4
# ----------------- Image Segmentation -----------------
def get_segmentation(image: Image.Image):
inputs = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = parser_model(**inputs)
logits = outputs.logits
predicted = torch.argmax(logits, dim=1)[0].cpu().numpy()
return predicted
# ----------------- Agnostic Creation -----------------
def generate_agnostic(image: Image.Image, segmentation):
img_np = np.array(image.resize((192, 256)))
agnostic_np = img_np.copy()
segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (192, 256), interpolation=cv2.INTER_NEAREST)
clothing_labels = [4]
for label in clothing_labels:
agnostic_np[segmentation_resized == label] = [128, 128, 128]
return Image.fromarray(agnostic_np)
# ----------------- Load Model -----------------
def load_model(model_type):
if model_type == "UNet":
model = UNetGenerator().to(device)
checkpoint = torch.load("viton_unet_full_checkpoint.pth", map_location=device)
state_dict = checkpoint.get("model_G_state_dict") or checkpoint.get("model_state_dict")
elif model_type == "GAN":
model = ImprovedUNetGenerator(in_channels=6, out_channels=3).to(device)
checkpoint = torch.load("viton_gan_full_checkpoint.pth", map_location=device)
state_dict = checkpoint.get("model_G_state_dict") or checkpoint.get("model_state_dict")
elif model_type == "Diffusion":
model = ImprovedUNetGenerator(in_channels=6, out_channels=3).to(device)
checkpoint = torch.load("viton_diffusion_full_checkpoint.pth", map_location=device)
state_dict = checkpoint.get("model_G_state_dict") or checkpoint.get("model_state_dict")
else:
raise ValueError("Invalid model type")
if state_dict is None:
raise KeyError(f"No valid state_dict found for model type {model_type}")
model.load_state_dict(state_dict)
model.eval()
return model
# ----------------- Generate Try-On -----------------
def generate_tryon_output(person_img, agnostic_img, cloth_img, segmentation, model, model_type):
if model_type == "UNet":
img_transform = transforms.Compose([
transforms.Resize((256, 192)),
transforms.ToTensor()
])
else:
img_transform = transforms.Compose([
transforms.Resize((256, 192)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
agnostic_tensor = img_transform(agnostic_img).unsqueeze(0).to(device)
cloth_tensor = img_transform(cloth_img).unsqueeze(0).to(device)
input_tensor = torch.cat([agnostic_tensor, cloth_tensor], dim=1)
with torch.no_grad():
output = model(input_tensor)
if model_type == "UNet":
output_img = output.squeeze(0).cpu().permute(1, 2, 0).numpy()
output_img = (output_img * 255).astype(np.uint8)
return Image.fromarray(output_img)
else:
output_img = output[0].cpu().permute(1, 2, 0).numpy()
output_img = (output_img + 1) / 2
output_img = np.clip(output_img, 0, 1)
person_np = np.array(person_img.resize((192, 256))).astype(np.float32) / 255.0
segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (192, 256), interpolation=cv2.INTER_NEAREST)
blend_mask = (segmentation_resized == 0).astype(np.float32)
blend_mask = np.expand_dims(blend_mask, axis=2)
final_output = blend_mask * person_np + (1 - blend_mask) * output_img
final_output = (final_output * 255).astype(np.uint8)
return Image.fromarray(final_output)
# ----------------- Traditional CV Pipeline -----------------
def create_agnostic_traditional(person_np, label_np):
mask = (label_np == 4).astype(np.uint8)
kernel = np.ones((7, 7), np.uint8)
dilated = cv2.dilate(mask, kernel, iterations=2)
agnostic = person_np.copy()
agnostic[dilated == 1] = [128, 128, 128]
return agnostic, dilated
def improved_warp_cloth(cloth_np, person_np, label_np):
mask = (label_np == 4).astype(np.uint8) * 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return cloth_np
cnt = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(cnt)
src_h, src_w = cloth_np.shape[:2]
src_points = np.array([[0,0],[src_w-1,0],[src_w-1,src_h-1],[0,src_h-1]], dtype=np.float32)
padding_x, padding_y = int(w*0.05), int(h*0.05)
dst_points = np.array([
[max(0, x - padding_x), max(0, y - padding_y)],
[min(person_np.shape[1] - 1, x + w + padding_x), max(0, y - padding_y)],
[min(person_np.shape[1] - 1, x + w + padding_x), min(person_np.shape[0] - 1, y + h + padding_y)],
[max(0, x - padding_x), min(person_np.shape[0] - 1, y + h + padding_y)]
], dtype=np.float32)
M = cv2.getPerspectiveTransform(src_points, dst_points)
warped = cv2.warpPerspective(cloth_np, M, (person_np.shape[1], person_np.shape[0]), borderMode=cv2.BORDER_CONSTANT)
return warped
def improved_blend_traditional(agnostic_np, warped_cloth_np, label_np):
target_mask = (label_np == 4).astype(np.uint8)
kernel = np.ones((9, 9), np.uint8)
target_mask = cv2.dilate(target_mask, kernel, iterations=2) * 255
gray = cv2.cvtColor(warped_cloth_np, cv2.COLOR_BGR2GRAY)
_, cloth_mask = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY)
combined_mask = cv2.bitwise_and(target_mask, cloth_mask)
combined_mask = cv2.GaussianBlur(combined_mask, (5, 5), 0)
M = cv2.moments(combined_mask)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) if M["m00"] != 0 else (96, 128)
try:
output = cv2.seamlessClone(warped_cloth_np, agnostic_np, combined_mask, center, cv2.NORMAL_CLONE)
except:
mask_3d = np.stack([combined_mask / 255.0] * 3, axis=2)
output = warped_cloth_np * mask_3d + agnostic_np * (1 - mask_3d)
output = output.astype(np.uint8)
return output
# ----------------- Main Pipeline -----------------
def virtual_tryon(person_image, cloth_image, model_type):
if model_type == "Traditional":
person_np = np.array(person_image.resize((192, 256)))[:, :, ::-1]
cloth_np = np.array(cloth_image.resize((192, 256)))[:, :, ::-1]
segmentation = get_segmentation(person_image)
label_np = cv2.resize(segmentation.astype(np.uint8), (192, 256), interpolation=cv2.INTER_NEAREST)
agnostic_np, _ = create_agnostic_traditional(person_np, label_np)
warped_cloth = improved_warp_cloth(cloth_np, person_np, label_np)
output_np = improved_blend_traditional(agnostic_np, warped_cloth, label_np)
return Image.fromarray(agnostic_np[:, :, ::-1]), Image.fromarray(output_np[:, :, ::-1])
segmentation = get_segmentation(person_image)
agnostic = generate_agnostic(person_image, segmentation)
model = load_model(model_type)
result = generate_tryon_output(person_image, agnostic, cloth_image, segmentation, model, model_type)
return agnostic, result
# ----------------- Gradio UI -----------------
demo = gr.Interface(
fn=virtual_tryon,
inputs=[
gr.Image(type="pil", label="Person Image"),
gr.Image(type="pil", label="Cloth Image"),
gr.Radio(choices=["UNet", "GAN", "Diffusion", "Traditional"], label="Model Type", value="UNet")
],
outputs=[
gr.Image(type="pil", label="Agnostic (Torso Masked)"),
gr.Image(type="pil", label="Virtual Try-On Output")
],
title="👕 Virtual Try-On App",
description="Upload a person image and a clothing image, select a model (UNet, GAN, Diffusion, Traditional), and try it on virtually."
)
if __name__ == "__main__":
demo.launch(share=True)
|